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ABSTRACT 

Existing Intelligent Tutoring Systems (ITSs) are unable to track 

affective states of learners. In this paper, we focus on the problem 

of emotional engagement, and propose to detect important affective 

states (i.e., ‘Satisfied’, ‘Bored’, and ‘Confused’) of a learner in real 

time. We collected 210 hours of data from 20 students through 

authentic classroom pilots. The data included information from two 

modalities: (1) appearance which is collected from the camera, and 

(2) context-performance that is derived from the content platform. 

In this paper, data from nine students who attended the learning 

sessions twice a week are analyzed. We trained separate classifiers 

for different modalities (appearance and context-performance), and 

for different types of learning sections (instructional and 

assessment). The results show that different sources of information 

are generically better representatives of engagement at different 

sections: For instructional sections, generic appearance classifier 

yields higher accuracy (55.79%); whereas context-performance 

classifier is more accurate for assessment sections (63.41%). 

Moreover, the results indicate that expression of engagement is 

person-specific through both of these sources, and personalized 

engagement models perform more accurately: When person-

specific data are added to the training set, on instructional sections, 

85.44% and 96.13% accuracies are achieved for appearance and 

context-performance, respectively. For assessment sections, the 

accuracies are 75.25% (appearance) and 90.24% (context-

performance). When only person-specific data are employed during 

training, similar accuracies are achieved even with very limited 

data. 
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• Human-centered computing➝Personal computing. 
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1. INTRODUCTION 

Current educational systems are designed based on the needs of an 

industrial society [1]: “one-size-fits-all”. Personalization 

(“accommodate-for-each”) is a key to design systems capable of 

addressing needs of individual students in the Information Age [2]. 

Technology is considered as an enabler for personalization in 

education [3]. Towards this end, Intelligent Tutoring Systems 

(ITSs) are used to track the learning process of students by 

monitoring their actions, creating a learning profile for each 

student, and providing real-time feedback for many learning 

difficulties [4], [5]. Although such systems are capable of 

personalization to some extent, they lack the required empathic 

capabilities. We envision a novel technology - an empathic 

autonomous ‘tutor’ - playing a role similar to a 1:1 human tutor. 

Relevant research indicates that engagement is positively 

correlated with learning [6]: The more students are engaged in 

learning activities, the more they learn. In [7], the overall 

engagement level of a student is defined as a combination of three 

parameters: (1) Cognitive engagement, defining the inner 

psychological quality during the learning process; (2) behavioral 

engagement, representing the learner’s observable actions (e.g., 

OnTask/OffTask); and (3) emotional engagement, corresponding 

to affective states of a learner during a learning task (e.g., 

happiness, boredom, or confusion). In this research, we see 

emotional engagement detection as a trigger for personalized 

experience. The majority of current ITSs provide teachers with a 

rough idea of students’ engagement in learning tasks based on 

interaction data between student and the content platform.  

However, they do not provide any concrete information about 

students’ affective (i.e., emotional) states – especially throughout 

instructional tasks.  

In our research, our goal is to develop the empathic autonomous 

‘tutor’ that can closely monitor students in real-time using multiple 

sources of data to understand their affective states. We aim to use 

affective state information as a trigger for personalizing students’ 

learning experience: For example, if a student is reading an article 

and identified as bored, a video representation of the content can be 

suggested. Or, if the student is detected as confused while solving 

a math question, hints can be provided for scaffolding.  

The remainder of this paper is organized as follows: In Section 2, 

the related literature is reviewed, considering the most important 

challenges driving our work. The proposed methodology is 

outlined in Section 3, followed by a summary of our experimental 

results in Section 4. Section 5 highlights our conclusions and future 

directions for our research. 

2. RELATED WORK 

Although there are some efforts towards affective computing in 

education, some major challenges still remain unaddressed. Such 

challenges include the following: (1) Learning-related affective 

states should be considered instead of the six basic emotions [8]; 

(2) Data acquisition in real-life scenarios is a challenging task [9]; 

(3) Multimodal approaches should be employed for improved 

engagement modeling [10]; and (4) Model personalization is 



necessary for accurate detection [11]. The remainder of this section 

will describe each of these challenges with literature. 

2.1 Learning-related affective states 

Students’ affective states can influence overall learning outcomes 

either positively or negatively [12], [13], [14]. Recognizing and 

addressing such states is crucial to positively impact student 

learning [15], [16]. However, in a classroom where there is one 

teacher and many students, addressing those states for every 

individual in a timely manner is often unrealistic. This brings up 

the need for intelligent systems capable of detecting and taking 

actions towards students’ affective states.  

There is an extensive track of research on detecting facial 

expressions specifically focusing on basic emotions of anger, fear, 

sadness, happiness, disgust, and surprise as described by Ekman 

[17] (an exhaustive review can be found in [18]). However, a recent 

review of 24 studies shows that the six basic emotions are not 

directly applicable to learning domain [12]: Instead, affective states 

such as bored, confused, satisfied (i.e., delight) are commonly 

observed during learning [19].  

There are studies focusing on the development of intelligent 

systems that can automatically detect students’ affective states and 

intervene accordingly to induce positive learning outcomes [12]. 

For example, in [20], the binary classification problem of whether 

a student was interested or not during learning activity was 

investigated. In [21], [22], and [23], automatic recognition of 

frustration was investigated. In [24], students’ posture is used to 

track boredom (low engagement) and flow (high engagement). In 

[25], affective states considered are confused, frustrated, engaged, 

bored, or neutral. In their most recent study [9], an updated list of 

affective states as bored, confused, frustrated, delighted, and 

engaged is provided. In [10], affective state detection was 

investigated as a four-state classification problem for detecting 

confidence, frustration, excitement, and interest.  

We base our research on the circumplex model [26]. During the 

labeling phase, we used four emotional labels ‘Excited’, ‘Calm’, 

‘Bored’, and ‘Confused’ corresponding to one quadrant of the 

circumplex model respectively. As outlined in Section 3.1.2, we 

merged the positive valence states of ‘Excited’ and ‘Calm’ into a 

single state ‘Satisfied’. In Section 4.1 we provide evidence that the 

adapted label set increased the inter-rater agreement level. 

2.2 Data acquisition in real-life scenarios 

Another challenge we aim to address in this research is data 

acquisition in real-life scenarios. Although there has been a great 

interest in detecting learning-related affective states, most of these 

studies are limited in terms of learning scenarios and/or amount of 

data used. In the majority of such studies, the data collection took 

place in a controlled laboratory environment. The advantage of lab 

environments is the controlled ambience (e.g., lighting, or 

background) with minimal distractions [9]. However, data 

collected in such environments does not allow to create models that 

capture real complexities of classrooms. In the literature, there are 

only a few studies that employ in-the-wild (i.e., in a realistic 

classroom scenario) databases [10], [9]. Unfortunately, these 

databases are limited in terms of time span (i.e., 4-5 one-hour long 

sessions), and none are publicly available. Therefore, for our 

research, we collected and labeled approximately 210 hours of 

student data collected over 17 sessions in authentic classroom 

scenarios.  

2.3 Multimodal approach 

Environmental factors in authentic classrooms usually result in far 

noisier data compared to data collected in a lab, especially for 

appearance data. Due to distractions in real-life classroom 

scenarios, appearance information (i.e., face-related data) can be 

polluted with unusual head pose or hand gestures obstructing facial 

area, and thereby preventing detection based on facial features. 

Moreover, according to [27], identical facial configurations include 

significantly different emotions depending on context. It is also 

indicated in [28] that the interpretation of human behavioral signal 

requires one to know the context where it is displayed, since its 

interpretation is significantly context-dependent. For instance, 

satisfaction can be expressed as a smiling face in context of leisure 

time and as a neutral face with wider-eyes in context of learning, 

whereas a frowning action unit can be an indication of anger in 

context of inter-personal communication and frustrated in context 

of learning. Therefore contextual information from a content 

platform can act as a complementary source of information.  

However, in literature, there are only a limited number of studies 

including contextual information as a source of modality. In [21], 

the multimodal sensory information from facial expression was 

combined with information about a learner’s activity on a 

computer. In [10], the use of physiological data were employed 

together with the contextual data from the tutoring system. 

In our research, we employ contextual information coming from 

the content platform as the complementary modality to appearance. 

Here, the platform provides us information about the context (e.g. 

difficulty level of the content) and the performance (e.g. number of 

hints taken). The contextual features are explained in detail in 

Section 3.2.

 

 

Figure 1. Overall scheme of the generic emotional engagement detector. 



2.4 Model personalization 

Despite of individual differences, current efforts in affect-related 

educational research are towards creating a generic learner-state 

model. However, as shown in recent research [11], [29], [30] for 

basic emotion recognition, personalized models can perform better 

in terms of detection accuracy. To address this gap in the 

educational research, we propose to develop a personalized 

emotional engagement model. Details on the proposed 

personalization scheme are provided in Section 3. 

3. METHODOLOGY 

In this paper, we aim to develop a system that can detect a learner’s 

emotional engagement through a personalized and multi-modal 

approach. The system setup includes a student using a computing 

device (such as a PC or a tablet) equipped with a camera, and 

consuming educational content through a content platform. The 

overall scheme for the generic emotional engagement detector is 

given in Figure 1: The raw data acquired from camera and content 

platform are fed into corresponding feature extractors, and then to 

the classifiers. The two classification outputs define the emotional 

engagement status of the learner.  

Once the affective state of a student is detected in an online manner, 

emotional engagement information can be used either directly by 

providing interventions for an improved learning experience of the 

student or by showing the teacher real-time status for each 

individual student through a dashboard. 

3.1   Data Collection and Labeling 

3.1.1 Data Collection 
One of the major challenges is to collect labeled data that is 

necessary for model training. Towards this end, we ran authentic 

classroom pilots with real students from a high school in Turkey. 

Our target group was 9th grade students (14-15 years old). We 

collected data in a math course that was optionally offered as a part 

of this study to interested students. The lessons were scheduled 

twice a week with 17 sessions for 20 students in total. Among the 

20 volunteering students, three of them dropped the course within 

the semester. Overall, nine of the students participated in the course 

twice a week, whereas the other eight participated once a week. At 

the end, around 210 hours of data were collected from these 

students. 

Students used an online, publicly available math learning tool as a 

content platform in the sessions. Each of the sessions took around 

60 minutes. During these sessions, the students watched 

instructional videos related to different math topics in the school 

curriculum and solved exercises (i.e., math questions) related to the 

topics covered. For each session, a math teacher was present in the 

classroom as a mentor. The specific curriculum was selected by the 

teacher as being appropriate for student level.  

During each session, our data collection framework recorded the 

video of the individual students with a 3D camera (i.e., Intel® 

RealSense™ Camera F200), and collected the context and 

performance logs from the content platform. Each student worked 

independently in the class using a laptop computer.  

3.1.2 Labeling Process 

For the supervised training phase of our models and for the 

performance evaluation of our system, ground truth labels were 

necessary. The labeling was done by experts with a background in 

educational psychology. We incorporated Human Expert Labeling 

Process (HELP) as described in [31] to rigorously label student data 

with respect to affective states. We developed and utilized a 

labeling tool. The experts provide labels based on inspecting four 

different inputs: They simultaneously monitor individual students’ 

videos and corresponding desktop captures; listen to audio 

including environment noise and students’ voices; and view 

additional contextual information about the recording (e.g., session 

number, lecture topic, etc.) to decide on final labels. The experts 

did continuous labeling: Whenever they observe a state change in 
student’s data, they assigned a new label. 

To perform labeling, eight labelers were hired and trained by an 

educational researcher using HELP. For increased reliability, each 

recording of a student was labeled by five different labelers. The 

inter-rater reliability was measured after the training session and 

was regularly tracked during the labeling process to detect any 

outliers. 

For the emotional engagement, we initially followed the suggestion 

from [8] and used four labels, each corresponding to one quadrant 

of the circumplex model – ‘Excited’, ‘Calm’, ‘Bored’ and 

‘Confused’. In addition to these four affective states, we also used 

the label ‘Unknown’ stating that the labeler cannot decide on the 

state, and the label ‘N/A’ (Not Available) stating that a segment is 

not valid either due to student is not visible or class-content is not 

active. 

The results from the labelers’ post-interviews showed that a 

distinction between positive and negative arousal for positive 

valence states was not clear. In [8] it was proposed that from an 

educational point of view, the two positive valence quadrants can 

be treated in the same way. Following this suggestion, we merged 

the positive valence states of ‘Excited’ and ‘Calm’ into a single 

state ‘Satisfied’. To reinforce this decision, the inter-rater 

agreement between the original label set with one label per 

quadrant and the adapted with a single label for positive valence 

quadrants were compared. As the reliability coefficient for 

measuring the agreement among multiple raters, we utilized 

Krippendorff’s alpha [32], and the results are given in Section 4.1.  

3.1.3 Final Label Assignments 
After the recorded data were labeled by the five labelers, we 

analyzed the labelers’ decisions. Note that we used sliding windows 

of 8-seconds (with an overlap of 4-seconds) and treated each 

window as a separate instance. Hence, the labeling data with 

intervals defined by each labeler for each state-change, was divided 

into fixed instances with duration of 8-seconds. To assign a final 

label to each instance, majority voting is applied together with 

validity filtering (i.e., if there is no majority among labelers, an 

instance is labeled as invalid/unknown). In addition to the final 

labels, an agreement level for each instance is assigned to carry out 

further experiments with data belonging to different agreement 

levels. Numerical details are provided in Section 4.1. 

3.2 Feature Extraction 

The features used in our system refer to the segments of 8-seconds 

length with an overlap of 4-seconds.  

3.2.1 Appearance Features 
The videos of individual students were recorded with Intel® 

RealSense™ Camera F200 during the data collection sessions. The 

raw video data includes the RGB and depth streams which are used 

for the extraction of low-level features via Intel® RealSense™ 

SDK [33]: Face location and head pose in the 3D space, 2D and 3D 

positions of 78 facial landmarks, head pose, 22 facial expressions, 

and seven basic facial emotions together with sentiment values are 



considered as the frame-wise features. These frame-wise features 

are only employed in the extraction of segment-wise higher-level 

features necessary for emotional engagement detection. As in [34], 

we extracted higher-level features including various L-estimator 

statistical values (e.g., tri-mean of head velocity) and energy 

calculations (e.g., trend of pose energy), related to head position 

and pose, to facial expressions, and to seven basic emotions. These 

robust statistical features constitute the appearance features. The 

groupings of appearance features used in this paper are given in 

Table 1. 

Table 1. Appearance and context-performance feature 

subgroups and the corresponding feature counts. 

Appearance  

Features 

Number of 

 Features 
Examples 

Tracking ratio 2 Position and pose tracking 

Head position 

and pose 
128 

Trend of pose energy, median of 
absolute head center 

acceleration, standard deviation 

of head position, etc. 

Facial 
expressions 

32 
Number of right eye raisers per 

segment, mean of smile, etc. 

Seven basic 

emotions 
28 

Mean of anger intensity, number 

of joyful segments etc. 

TOTAL 190  
   

Context-

Performance  

Features 

Number of 

Features 
Examples 

Time related 6 
Time from beginning, 

video/attempt duration, etc. 

Trial related 3 
Trial number, number of trials 

until success, etc. 

Hint related 5 
Number of hints used on attempt 

or question, etc. 

Grade related 7 
Grade, correct attempt 

percentage, etc. 

Other 3 
Gender, question number from 

beginning, etc. 

TOTAL 24  
 

3.2.2 Context and Performance Features 
Contextual features are extracted partly from user profiles and 

session information we had in our database (i.e., gender, age, time 

of a day), in addition to the data from the content platform (i.e., 

video duration, exercise/trial number, time within a session). Some 

of these contextual features are related to the instructional sections 

(e.g., video duration), some are related to the assessment sections 

(e.g., question number), and some are related to both types of these 

sections (e.g., time from beginning). The performance features are 

extracted from the user profile data containing user characteristics 

provided by the content platform. Note that these performance 

features are all related to the assessment sections, in which the 

students are expected to solve exercises. These features are 

extracted either per each assessment section where a group of 

questions are solved in a row, per each question or per each attempt 

(i.e., each trial within a question). In general, performance features 

are related to the grade, the time spent, the number of trials and the 

number of hints taken for a question. In addition to these initial 

performance features, we examined features that were used in [35] 

with a different content platform. We adapted those features that 

are applicable to our platform.  

Since contextual and performance features are both obtained from 

the content platform, we employed data fusion at feature level and 

concatenated these two features into one context-performance 

feature set. The groupings of context-performance features 

examined in this study are given in Table 1, together with feature 

counts and some exemplary features. 

3.3 Uni-modal Classification 

As the uni-modal classifiers, we employed Random Forest (RF) 

classification method [36]. The idea behind RF is that it grows 

many decision trees while using a randomly selected subset of 

training data for each tree. Moreover, a randomly selected subset of 

features is used to split each node. The final class for a test sample 

is assigned by the majority vote among all trees. The advantages of 

using RF as a classifier are that there is no need for pruning and 

cross validation, and over-fitting is not an issue. For all these 

reasons, Random Forest (RF) with 100 classification trees is 

selected to be the final classification method. For the two different 

modalities, we trained two separate RF classifiers: (1) Appearance 

classifier, and (2) context-performance classifier. 

3.4 Model Personalization 

As empirically shown in [29], [30], person-specific models achieve 

significant improvement over person-independent models if the 

subject-specific data are sufficient for model training. For our 

future work, we envision to obtain personalized models for 

emotional engagement detection through online self-labeling of the 

person-specific data: During the lecture, the individual students 

will be asked through intervention pop-ups to self-label themselves 

at randomized time points. The self-labeling interface will also be 

embedded into the content platform and will be permanently 

reachable, so that the students can give labels any time. At the end 

of each session, the training data will be updated with the labeled 

person-specific data and the model will be retrained.  

In this paper, we investigated the improvement that could be 

achieved by personalized models: Since self-labels are not 

available for the current dataset, we considered the ground truth 

labels as self-labels. We applied personalization through including 

person-specific data during the training phase, for both of the uni-

modal classifiers. We experimented with two different approaches 

on how to include the person-specific data: (1) ‘Adapted’, and (2) 

‘Personal’. In ‘Adapted’, we augmented the initial training set of 

the ‘Generic’ model, collected from a different set of students, with 

the acquired and labeled instances of the test subject. In ‘Personal’, 

person-specific training sets are generated by using only the 

personal data. The aim of the ‘Adapted’ model is to merge the 

capabilities of the ‘Generic’ detector (which is trained on a large 

database) with the characteristics residing in the person-specific 

data. However, if the personal data is sufficient for training, the 

‘Personal’ model would be better to represent person-specific 

behaviors. In Figure 2, the training sets used in different models are 

visualized. In Section 4.3, the preliminary experiments to show the 

need for personalized models are summarized.  

 

Figure 2. Training sets used for different models: (1) Generic, 

(2) Adapted, and (3) Personal.  



  

(a) Instructional (b) Assessment 

Figure 3. Distribution of samples for different agreement levels of (1) High (5/5), (2) Medium 

(4/5), and (3) Low (3/5), for (a) Instructional, and for (b) Assessment sections. 

4. EXPERIMENTAL RESULTS 
For emotional engagement detection, we experimented with two 

different modalities: (1) Appearance and (2) context-performance. 

The learning content included two different types of sections: (1) 

Instructional, and (2) assessment. Currently, these two section 

types are considered as two separate problems, and two separate 

models are constructed. For each different modality and each 

section type, we experimented with three different models: (1) 

‘Generic’, where the training set contains data of students separate 

from the test subject in a leave-one-out manner; (2) ‘Adapted’, 

where the training set is augmented with the subject-specific data; 

and (3) ‘Personal’, where subject-specific training sets are 

constructed using only the subject-specific data.  

4.1 Labeler Agreement Analysis   

As outlined in Section 3.1.2, during the labeling phase, the four 

emotional labels, ‘Excited’, ‘Calm’, ‘Bored’, ‘Confused’, and two 

other labels ‘Unknown’, ‘N/A’ were used (i.e., 4+2 states). As 

stated in the labelers’ post-interviews, the distinction between high 

and low arousal for positive valence states was not always clear. 

This experience was in line with the proposal of [8] to treat positive 

valence quadrants in the same way. Following this suggestion, we 

merged the two positive valence states ‘Excited’ and ‘Calm’ into a 

single state ‘Satisfied’ (i.e., 3+2 states). To reinforce our decision, 

we compared the inter-rater agreement between the original 4+2 

label set and the adapted 3+2 one: ten hours of data collected from 

four subjects were labeled by three persons in both ways. The inter-

rater agreement level according to Krippendorff’s alpha [32] was 

0.2 in the original 4+2 label set and it increased to 0.4 in the adapted 

3+2 label set. 

Since multiple labelers were employed for the labeling process, it 

was necessary to assign a final label to each of the instances. For 

this process, we applied majority voting. However, since emotional 

labeling is a subjective task and the inter-rater agreement level for 

the small experimentation outlined above is not sufficiently high 

(below 0.8), we conducted a filtering over the traditional majority 

voting: We computed the ratio of the agreement, and grouped 

instances accordingly. We had three agreement levels: (1) High, (2) 

medium, and (3) low; for 5/5, 4/5, and 3/5 majority votes, 

respectively. The other samples were regarded as instances of 

disagreement. The data distribution of agreement levels are 

visualized in Figure 3, in (a) for instructional, and in (b) for 

assessment samples. As can be seen in these figures, the number of 

‘Confused’ samples for the instructional, and the number of 

‘Bored’ samples for the assessment sections were too few. 

Therefore, we have discarded ‘Confused’ class for the instruction 

sections, and ‘Bored’ for the assessment sections. Furthermore, we 

decided to use High-Medium agreement level for the instructional 

sections. However, for the assessment, we used all of the agreement 

levels, since the assessment sections were short in general and this 

would have led to limited number of samples in total. In addition to 

agreement samples, we included the disagreement instances as 

representatives of the ‘Unknown’ class. 

To investigate how the performance of the personalized models 

changed, we selected students who attended most of the sessions 

(i.e., twice a week). Therefore, in the experiments summarized in 

this paper, the data from nine of the students are utilized. 

4.2 Generic Classification Results 

Although the main problem addressed in this paper is model 

personalization, we also included results on the generic model for 

comparative purposes. For each section type (instructional vs. 

assessment) and for each modality (appearance vs. context-

performance), separate RF classifiers are trained. The available 

data of each student are divided into training and test sample sets, 

as approximately 80% and 20% of the whole data, respectively. For 

each individual, we carried out leave-one-subject-out approach, 

where the training samples of all the other students are utilized to 

construct the training set of that individual’s classifiers. Due to data 

imbalance, we also experimented with 10-fold random down-

sampling to construct balanced training sets: For each student, the 

instance count of the limiting class (with the minimum number of 

training samples) is used for random instance selection per class, 

and the random selection is carried out for ten times. As results, we 

reported F1 measure which incorporates both precision and recall 

values. 

4.3 Personalization Results 

In this paper, we employed the ground truth labels to construct 

person-specific labeled sets, necessary for the personalization 

experiments. When constructing person-specific models, we 

considered two approaches: (1) ‘Adapted’, where the training set of 

the generic model is augmented with the person-specific data; (2) 

‘Personal’, where only the person-specific data is used in the 

training phase. The results for the three models of ‘Generic’, 

‘Adapted’, and ‘Personal’ are compared in Table 2 and Table 3, for 

instructional and assessment sections, respectively: The average 

numbers of test instances for each student are given in column 2. 

The average number of instances used in training, and average F1 

values for the appearance and the context-performance classifiers 

are given in columns 3-5, in columns 6-8, and in columns 9-11; for 

‘Generic’, ‘Adapted’, and ‘Personal’ models, respectively.  As the 
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Table 2. Engagement detection results (F1-measures) for instructional sections on Appearance (Appr.) and context-performance 

(C-P) modalities, using: (1) the ‘Generic’, (2) the ‘Adapted’, and (3) the ‘Personal’ models. 

Classes 

Average 

Test 

Size 

GENERIC MODEL ADAPTED MODEL PERSONAL MODEL 

Average 

Training Size 

Appr. 

(%-F1) 

C-P  

(%-F1) 

Average  

Training Size 

Appr. 

(%-F1) 

C-P 

(%-F1) 

Average 

Training Size 

Appr. 

(%-F1) 

C-P  

(%-F1) 

Unknown 12 967 10.73 9.62 1018 24.85 72.97 51 33.04 85.38 

Satisfied 336 967 61.04 55.76 2273 87.63 96.12 1305 89.65 97.18 

Bored 151 967 44.93 39.68 1542 70.91 93.33 575 73.54 94.41 

OVERALL 499 2901 55.79 49.50 4833 85.44 96.13 1931 89.30 97.32 
 

Table 3. Engagement detection results (F1-measures) for assessment sessions on Appearance (Appr.) and context-performance 

(C-P) modalities, using: (1) the ‘Generic’, (2) the ‘Adapted’, and (3) the ‘Personal’ models. 

Classes 

Average  

Test 

Size 

GENERIC MODEL ADAPTED MODEL PERSONAL MODEL 

Average 

Training Size 

Appr. 

(%-F1) 

C-P 

(%-F1) 

Average 

Training Size 

Appr. 

(%-F1) 

C-P 

(%-F1) 

Average  

Training Size 

Appr. 

(%-F1) 

C-P 

(%-F1) 

Unknown 88 1886 33.53 27.94 2211 47.21 72.02 324 49.48 72.75 

Satisfied 264 1886 60.58 76.32 2884 83.43 94.04 997 83.79 94.39 

Confused 43 1886 17.12 46.59 2044 37.64 82.05 158 44.04 85.01 

OVERALL 395 5658 48.12 63.41 7139 75.25 90.24 1479 76.37 90.89 
 

overall results (last rows) in Table 2 and Table 3 indicate, it is better 

to include person-specific data in the training set (‘Adapted’), and 

it is much better to obtain fully-personal models (‘Personal’). 

Therefore, it can be stated that the information residing both in the 

appearance and in the context-performance modalities is specific 

for each person. When the appearance and context-performance 

classifiers are compared, the results show that the context-

performance classifiers’ improvement is more significant, and the 

context-performance features can achieve better personal models 

with equal amount of data. On the other hand, the appearance 

classifiers need more subject-specific data to achieve similar 

accuracies to the context-performance modality. The need for more 

personal data is evident especially for the ‘Unknown’ class (for 

both modalities and for both section types). In addition, for 

assessment sections, the number of ‘Confused’ samples is a 

limiting factor for the ‘Personal’ appearance classifier (Table 3, 

row 4).  

5. CONCLUSIONS AND FUTURE WORK 

The aim of this work is to detect emotional engagement of a student 

while the learner is consuming educational content. In this paper, 

we investigated appearance and context-performance modalities. 

For a better understanding of the classification performance, we 

treated instructional and assessment sections separately. For the 

different modalities and different section types, we experimented 

with three models: (1) ‘Generic’, (2) ‘Adapted’, and (3) ‘Personal’. 

The results of the generic models showed us that appearance is 

more informative for the instructional sections (55.79% vs. 

49.50%), whereas with the presence of performance-related 

features for the assessment sections, context-performance modality 

becomes more representative (63.41% vs. 48.12%). As the 

personalization experiments indicated, information included in 

both of the modalities are person-specific, thus model 

personalization is a must to obtain highly performing emotional 

engagement models. Context-performance classifiers achieve high 

improvement even with limited personal data (90.89-97.32%), 

whereas improvement for the appearance modality is lower (76.37-

89.30%) and requires more person-specific instances to achieve 

accuracies as high as context-performance. For both modalities, 

‘Generic’ models can be used for emotional engagement detection, 

if no person-specific data are available. Through acquisition of 

personal data, however, ‘Adapted’ models should be utilized. After 

sufficient amount of person-specific data are collected, ‘Personal’ 

models should be preferred for improved accuracies.  

In future work, we will investigate fusion strategies to merge 

appearance and context-performance modalities. To further 

increase the dataset volume and to validate personalization 

experiments with real self-labels, we are currently designing a new 

data collection pilot. We are redesigning course content so that data 

imbalance can be decreased while increasing samples for 

‘Confused’ and ‘Bored’ classes. Moreover, we are investigating 

strategies for a better representation of the ‘Unknown’ class. We 

are planning on including bio-sensors as an additional modality. 

We are working on strategies for personalization, where the need 

for manual or self-labeling is minimized. Moreover, we are 

working on generic and personalized feature selection methods to 

identify important traits. 
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