
GenAll Algorithm: Decorating Galois lattice
with minimal generators

Sondess Ben Tekaya, Sadok Ben Yahia and Yahya Slimani

Département des Sciences de l’Informatique, Faculté des Sciences de Tunis
Campus Universitaire, 1060 Tunis, Tunisie.

sondess.bentekaya@laposte.net,{sadok.benyahia,yahya.slimani}@fst.rnu.tn

GenAll Algorithm: Decorating Galois lattice

with minimal generators

S. Ben Tekaya, S. Ben Yahia, and Y. Slimani

Département des Sciences de l’Informatique, Faculté des Sciences de Tunis
Campus Universitaire, 1060 Tunis, Tunisie.

sondess.bentekaya@laposte.net,{sadok.benyahia,yahya.slimani}@fst.rnu.tn

Abstract. The problem of relevance and the usefulness of extracted as-
sociation rules is becoming of primary importance, since an overwhelming
number of association rules may be derived. This paper proposes an al-
gorithm, called GenAll, to build a formal concept lattice, in which each
formal concept is ”decorated” by its minimal generators. The main char-
acteristic of this algorithm is to use a refinement process of upper cover
lists to determine, in a simultaneous manner, the set of formal concepts,
their underlying partial order and the set of minimal generators associ-
ated to each formal concept. Experimental results have showed that the
proposed algorithm is specially efficient for dense formal contexts com-
pared to that of Nourine et al.. Response times pointed out by GenAll
algorithm largely outperform those of Nourine et al..
Keywords: Data Mining, Formal Concept Analysis, Generic association
rules, Generator.

1 Introduction

Data Mining is a discipline which aims to discover regularities, in voluminous
datasets, commonly expressed by association rules [1]. Several studies in par-
ticular underlined the prohibitive number of association rules drawn from even
reasonably sized datasets [2]. This fact bootstrapped the development of more
acute techniques or methods to reduce the size of the reported rule sets. In
this context, the battery of results provided by the Formal Concept Analysis
(FCA) permitted to define ”irreductible” nucleus of association rule subset bet-
ter known as generic bases. These bases constitute reduced sets of informative
rules allowing to preserve the most relevant rules, without loss of information.
The generation of these informative association rules relies on the extraction of
formal concepts, its associated minimal generators and the underlying partial
order [3]. In this paper, our main claim is that there is no single algorithm al-
lowing to obtain the generic base of association rules. In fact, a critical survey
of dedicated literature pointed out the following remarks:

1. Oriented Data Mining algorithms generate the set of closed itemsets1

and the set of associated minimal generators [4–6]. The underlying order
1 or equivalently the set of formal concept intents.

Radim Bělohlávek, Václav Snášel (Eds.): CLA 2005, pp. 166–178, ISBN 80–248–0863–3.

GenAll Algorithm: Decorating Galois lattice with minimal generators 167

between closed itemsets is badly missing or not of interest. To obtain the
underlying partial relation, one can use the algorithm proposed by Valtchev
et al. [7] to construct the covering graph.

2. Oriented formal concept algorithms generate the set of formal concepts
and the underlying order [8]. Here, the set of associated minimal generators
is missing. In this case, we can apply the JEN algorithm [9] to catch out
minimal generators given that the covering graph is already generated.

In this paper, we propose a new algorithm, called GenAll, merging the above
mentioned views. Indeed, aiming to derive generic bases of association rules,
we propose to build the graph in which each formal concept is decorated by
its associated minimal generators. As a starting point, we choose to improve the
algorithm presented by Nourine et al. [10]. This choice can be justified by the fact
that the latter presents the best theoretical complexity, even though practical
experiments highlighted that it is the worst compared to other algorithms [8, 11].
Hence, a careful review of Nourine et al. algorithm showed that it operates in two
steps: An original approach, based on a special trie, to discover and store formal
concepts. A costly repeated access to originally resident disk to compute the
underlying order between formal concepts. However, the bad results of Nourine
et al. algorithm are not a fatality and we feel that its bad performances can be
largely improved using the GenAll algorithm proposed in this paper.

The remainder of the paper is organized as follows: Section 2 briefly sketches
the basic FCA constructs and stresses on the link between the notion of min-
imal blocker and minimal generator. Section 3 discusses in depth the Genall
algorithm. Results of experiments carried out on benchmarking datasets are re-
ported in Section 4. Finally, section 5 concludes this paper and points out some
research directions for future work.

2 Basic notions

Formal Concept: Let us consider an formal context K = (O, I,R), where O
is a set of objects, I is a set of attributes (or items) and R is a binary relation
between the objects and the attributes (R ⊆ O × I). Each couple (o, a) ∈ R
expresses that the transaction o ∈ O contains the attribute a ∈ I. Within a
context, objects are denoted by numbers and attributes by letters.

We define two functions summarizing links between subsets of objects and
subsets of attributes induced by R, that map sets of objects to sets of attributes
and vice versa.
Thus, for a set O ⊆ O, we define: φ(O) = {a|∀o, o ∈ O ⇒ (o, a) ∈ R} and for
a set A ⊆ I, ψ(A) = {o|∀a, a ∈ A ⇒ (o, a) ∈ R}. Both functions φ and ψ form
a Galois connection between the sets P(I) and P(O) [12]. Consequently, both
compound operators of φ and ψ are closure operators, in particular ω = φ ◦ψ is
a closure operator.

168 Sondess Ben Tekaya, Sadok Ben Yahia, Yahya Slimani

A formal concept is a pair CK = (O, A), where O is called extent, and A is a
closed itemset2, called intent. Furthermore, both O and A are related through
the Galois connection, i.e., φ(O) = A and ψ(A) = O. Let an itemset A ⊆ I, the
support of the itemset A in the context K is defined by: support(A) = |ψ(A)|

|O| .
Face: Let CK = (O, A) be a formal concept and let predi(CK) be the ith imme-
diate predecessor of CK in a Galois lattice extracted from a context K. The ith

face of the formal concept CK corresponds to the difference between its intent
and the intent of its ith predecessor [13].

Let p be the number of immediate predecessors of the formal concept CK. The
family of faces FCK of the formal concept CK is expressed by the following rela-
tion: FCK = {A−Intent(predi(CK)}, i ∈ {1, . . . , p} [13]. For example, according
to the formal concept lattice presented on the figure 3, F(abde,23)K

= {b, e}.
Minimal blocker: Let G = {G1, ..., Gn} be a family of n sets. A blocker B of
the family G is a set where the intersection with all sets Gi ∈ G is not empty
[13]. A blocker B of family of G = {G1, ..., Gn} is said to be minimal if � ∃B1 ⊂ B
and ∀Gi ∈ G, B1∩Gi �= ∅ [13]. Given the family of faces F(abde,23)K

= {b, e}, the
minimal blocker B = {be} where the intersection with the two faces is always
different of the empty set.
Generator: Let CK be a formal concept and FCK its family of faces. The set
G of the generators associated with the intent A of the formal concept CK,
corresponds to the minimal blockers associated to the family of faces FCK [13].
Equivalently, An itemset g ⊆ I is called minimal generator of a formal concept
CK = (O, A), if and only if ω(g) = A and � ∃g1 ⊂ g such that ω(g1) = A [14].
Minimal association rules: An association rule is an assorted statistical met-
ric implication between itemsets of the form r : X ⇒ (Y −X) in which X and Y
are frequent itemsets (their supports are at least equal to a minimal threshold,
called minsup), and X ⊂ Y . Itemsets X and (Y −X) are called, respectively,
antecedent and conclusion of the rule r. The valid association rules are those
whose measure of confidence Conf(r) = support(Y)

support(X) is greater than or equal to
the minimal threshold of confidence, named minconf . An association rule whose
confidence is equal to 1 is called exact association rule. Otherwise it is called ap-
proximative association rule. Bastide et al. characterized what they called ”the
generic base for exact association rules” (adapting the global implication base
of Guigues and Duquenne [15]). The generic base for exact association rules is
defined as follows :
Trie3: It is a research tree, whose elements are stored in a condensed way. The
”trie” used by the Nourine algorithm presented in [10] is a special trie, whose
edges are labelled by attributes of formal concepts, and only some nodes are
labelled by the extents of formal concepts. The way going from the root node
towards a labelled node by an extent form a formal concept. As shown in Figure
1, (acde, 34) is a formal concept.

2 an itemset is a set of items or attributes.
3 From reTrieval.

GenAll Algorithm: Decorating Galois lattice with minimal generators 169

root

a

d

e

c

d

e

f

4

3 4

1 2 3 4

2 3 4

f

3

d

e

b

d

e

c

2 3

1 2 3

Fig. 1. Example of trie structure

3 The proposed GenAll algorithm

In this section, we present a new algorithm, called GenAll, to derive generic
bases of association rules. To do so, it gathers in a single pass all the required
informations which are : the set of formal concepts and their associated minimal
generators, the underlying partial order.

The GenAll algorithm is inspired in particular from the first part of the
Nourine et al. algorithm [10], stressing on the construction of the formal concept
trie. The choice of this algorithm is motivated by the fact that it presents the
best theoretical complexity [8, 10, 11]. In addition to its linear complexity, the
originality of this algorithm resides in its way to discover formal concepts and
their storage in a special trie.

However, this algorithm presents some disadvantages, that we can summarize
as follows:

1. A costly systematic back to the dataset, originally resident disk, to compute
the covering graph of the formal concepts,

2. Ignore the determination of minimal generators associated to each formal
concept.

To avoid these disadvantages, we present a new algorithm, relying on the
construction of a trie to calculate on the fly, the set of formal concepts, their as-
sociated minimal generators and the partial order between these formal concepts.
Notations used by GenAll algorithm are given in Table 1, while the pseudo-
code is illustrated by Algorithm 1. In each iteration, the algorithm builds the
set of formal concepts, the set of candidate minimal generators and a potential
order, which has to be later refined, between the already discovered formal con-
cepts. Each transaction is passed only once. Each iteration consists of two steps.
The first calculates the formal concepts and generates a potential order between
formal concepts, whereas the second aims to refine the order and to compute the
associated minimal generators. These two steps are discussed in the following.

170 Sondess Ben Tekaya, Sadok Ben Yahia, Yahya Slimani

Algorithm 1 Construction of formal concept lattice decorated by the minimal
generators
1: Algorithm GenAll

Input : Formal context K
Output : Lexicographic tree of F(trie), ImmSucc of each formal concept, list gen
Begin

2: F = (∅, I)
{/* step 1: Generation of formal concepts */}

3: For Each transaction t ∈ K Do
4: L = ∅
5: For Each concept Ci ∈ F Do
6: C.intent = Ci.intent ∩ t
7: If C.intent �∈ F Then
8: F = F ∪ C
9: C.extent = Ci.extent ∪ t.T ID

10: C.ImmSucc = {t} ∪ {Ci} \ {C}
11: L = L ∪ C {/* Sorted insertion */}
12: Else
13: C.extent = C.extent ∪ Ci.extent ∪ t.T ID
14: If C �∈ L Then
15: L = L ∪ C {/* Sorted insertion */}
16: End If

{/* Updating C.ImmSucc */}
17: C.LP = {t} ∪ {Ci} \ {C}
18: For Each Pi ∈ C.LP Do
19: For Each Succ ∈ C.ImmSucc Do
20: Compare-concept(Succ, Pi)
21: End For
22: End For
23: End If
24: End For{/* Refinement of immediate successor list and determination of minimal

generators*/}
25: For Each concept Ci ∈ L Do
26: Ci.ImmSucc = find-Succ(Ci,L)
27: For Each Succ ∈ Ci.ImmSucc Do
28: face = Succ \ Ci

29: For Each facei ∈ Succ.list face Do
30: Succ.list face = compare-face(face, facei)
31: End For
32: End For
33: End For
34: End For

GenAll Algorithm: Decorating Galois lattice with minimal generators 171

Structure Fields Description

F Family of the formal concepts.

L Lists of formal concepts calculated in an iteration i.

LP Intermediary list of formal concepts.

C Formal concept.

intent Intent of the formal concept

extent Extent of the formal concept

ImmSucc List of immediate successors of the formal concept

list face List of faces of the formal concept

list gen List of the minimal generators of the formal concept

Table 1. Notations

3.1 Generation of formal concepts

In this step (lines 4-24), we start by initializing the L list with the empty set. This
list will be useful for the refinement of the set of the immediate successors of each
formal concept found in an iteration. To calculate the set of formal concepts, we
perform an intersection between the intent of each formal concept of the family
F and each transaction of the dataset. Two cases are distinguishable:

1. The intent does not exist in the family F (a new formal concept is
found): it must then be added to the family F . Then, the associated formal
concept extent is calculated (line 9). We can notice that all the transactions
of the formal context are formal concepts. Hence, the result of the intersec-
tion of the transactions with the formal concept where its intent is equal to
the set of attributes of the formal context, is equal to the attributes of the
transaction.
Potential immediate successors of this new formal concept are firstly ini-
tialized with the formal concept utilized to generate it (line 10). Indeed, to
determine potential immediate successor of a formal concept, we should dis-
tinguish two particular cases:
If the generated formal concept is equal to the transaction, then only the
formal concept used in this intersection can be an immediate successor. Oth-
erwise both the transaction and the formal concept are considered as poten-
tial immediate successors of the formal concept. Thereafter, this new formal
concept is added to the list L (line 11). It is important to mention that this
insertion is performed by maintaining an ascending order of formal concept
intents cardinality.

2. The intent already exists in the family F : the formal concept extent
(line 13) should be updated, and we check whether the concept is already
existing in the list L (lines 14-15). Aiming to update the immediate suc-
cessors list ImmSucc of the formal concept, and given that for each formal
concept we maintain an ImmSucc list, we build a list LP containing the
formal concepts used to generate it. This list is necessary, to be able to

172 Sondess Ben Tekaya, Sadok Ben Yahia, Yahya Slimani

make comparisons and to update the ImmSucc list. Indeed, for each ele-
ment in LP and for each element in ImmSucc list, we test the inclusion
of these formal concepts using the Compare-concept function (line 20).
The Compare-concept function is applied to update the ImmSucc list of
the formal concepts under consideration. This list has to be modified in two
cases: the first case, the element of LP is smaller (in term of inclusion) than
one element of ImmSucc. In this case, the old immediate successor will be
replaced by the new one. The second case, the two elements are incompara-
ble: a new successor will then be added to the ImmSucc list of the formal
concept under concern.

3.2 Refinement of immediate successor list and determination of
minimal generators

We notice that the formal concepts, found in an iteration, represent a branch of
the lattice, i.e., for each formal concept (except the largest one), we find another
formal concept calculated in the same iteration, which covers it. For that, we
traverse the L list of formal concepts found in an iteration and for each formal
concept we call the find-Succ function (lines 25-26). This function is based
on the fact that a formal concept of cardinality n (i.e., the length of its intent
is equal to n) is at least covered by a formal concept of cardinality (n + 1)
or higher. For that, and since the L list is sorted according to the cardinality’s
intent ascending order, we seek for each formal concept of cardinality n, a formal
concept which covers it in the list of cardinality (n+1). In the event of defect, we
pass to the cardinality (n + 2), until we find a minimal covering formal concept.
Then, we compare these formal concepts to update the ImmSucc list.

Once the list of the immediate successors (ImmSucc) of the current formal
concept is built, we traverse this list and for each immediate successor we have
to compute the set of its minimal generators. To obtain such result, we calculate
the associated faces of successors (line 28), then we compare them to the corre-
sponding list of faces by calling the Compare-face function (line 30). The set
of faces list face of the formal concept (immediate successor) can be modified
in two cases as illustrated by the following:

1. The face is smaller (in term of inclusion) than an element of list face: in
this case, we calculate the difference face, and we replace the old face by
the new one. If the obtained difference face does not exist in one of the
faces of this formal concept, then we remove each generator containing this
difference. This removal is necessary, since a non existing attribute in the
faces cannot exist in the generators.

2. The face is incomparable with all the faces of list face: in this case, it will
be added to list face.

When the faces list is updated, the Compute-Min-blockers function of
the JEN algorithm [9] is applied for determining the minimal generators.

GenAll Algorithm: Decorating Galois lattice with minimal generators 173

Example
Let us consider the Formal context illustrated by Figure 3 with the set of at-
tributes I = {a, b, c, d, e, f} and the set of transactions of the formal context,
denoted from 1 to 4. Firstly, the family F is initialized with the set of attributes

R a b c d e f

1 × × ×
2 × × × ×
3 × × × × ×
4 × × × × ×

Fig. 2. Formal context K.

(ad,1 2 3 4)

(ade, 2 3 4)

(abde,2 3)

(abcde,3)

(abcdef,)

(abd, 1 2 3)

(acde, 3 4)

(acdef,4)

e

bf

be

f

b

Fig. 3. Formal concept lattice extracted from

the context K decorated by some minimal gen-

erators.

(line 2). It present the top formal concept of the lattice.
First step: Generation of formal concepts

Each formal concept of F is handled individually. Let us consider the first trans-
action {abd}:
Transaction 1:
The application of the intersection operation with the single formal concept of
the family F gives raise to a new formal concept with an intent equal to {abd}.
The extent of this new formal concept, denoted C2, will be later computed.
Thus, the family F is updated by adding C2:
F = {(abcdef, ∅), (abd, ∅)}.
At first, the set of immediate successor of C2 is initialized with C1 = (abcdef, ∅)
and the extent of C2 is initialized with union of C1.extent and the transaction
ID under concern.
Hence, C2.extent = {1} and C2.ImmSucc = {(abcdef, ∅)} and the L list is ini-
tialized with {(abd, 1)}.
Second step: Refinement of immediate successor list and determina-
tion of minimal generators
For the single formal concept in L = {(abd, 1)} we haven’t to update the
ImmSucc list of this concept, and (abd, 1).ImmSucc = {(abcdef, ∅)}. For each
immediate successor we compute its minimal generators set using the Compute-
Min-blockers function of the JEN algorithm [9].
The face of the formal concept (abcdef, ∅) = cef . Then C1.listgen = {c, e, f}.

174 Sondess Ben Tekaya, Sadok Ben Yahia, Yahya Slimani

Transaction 2:
Let now,consider the second transaction {abde}:
{abcdef} ∩ {abde} = {abde}, {abde} is an intent of a new formal concept.
F = {(abcdef, ∅), (abd, 1), (abde, ∅)}, C3.extent = {2}, then:
F = {(abcdef, ∅), (abd, 1), (abde, 2)}
C3.ImmSucc = {(abcdef, ∅)} and L = {(abde, 2)}.
These process above is repeated for the second formal concept in the family F :
{abd}∩{abde} = {abd}, this set is an intent of an existing formal concept. Then
we update the extent of this formal concept (line 13): C2.extent = {12} and
L = {(abd, 12), (abde, 2), }
C2.LP = {abde}. Using Compare-concept function we have {abde} ⊂ {abcdef}
then we update C2.ImmSucc = {abde}.
The second step is performed and we obtain:
C2.ImmSucc = {(abde, 2)} and C3.ImmSucc = {(abcdef, ∅)}.
At the end of the thirst transaction we obtain:
F = {(abcdef, ∅), (abd, 123), (abde, 23), (abcde, 3)}

C2.ImmSucc = {(abde, 23)} C3.ImmSucc = {(abcde, 3)}
C4.ImmSucc = {(abcdef, ∅)}
C1.list gen = {f} C2.list gen = {a, b, d}
C3.list gen = {e} C4.list gen = {c}
Transaction 4= {acdef}

At the first step we obtain:
F = {(abcdef, ∅), (abd, 123), (abde, 23), (abcde, 3), (acdef, 4), (ad, 1234),

(ade, 234), (acde, 34)}
C5.ImmSucc = {(abcdef, ∅)} C6.ImmSucc = {(abd, 123), (acdef, 4)}
C7.ImmSucc = {(abde, 23), ((acdef, 4)} C8.ImmSucc = {(abcde, 3), (acdef, 4)}
L = {(ad, 1234), (ade, 234), (acde, 34), (acdef, 4)}. Let consider the first formal
concept in L list, (ad, 1234). The later formal concept, has as immediate suc-
cessor the formal concept (acdef, 4). But we find in L list, a formal concept
with cardinality 3 who can cover the formal concept (ad, 1234). Then we replace
(acdef, 4) by (ade, 234) because {ade} ⊂ {acdef}. The same process is done for
the other formal concepts. We have at the end:

C5.ImmSucc = {(abcdef, ∅)} C6.ImmSucc = {(abd, 123), (ade, 234)}
C7.ImmSucc = {(abde, 23), ((acde, 34)} C8.ImmSucc = {(abcde, 3), (acdef, 4)}
C1.list gen = {bf} C2.list gen = {b}
C3.list gen = {be} C4.list gen = {bc}
C5.list gen = {f} C6.list gen = {a, d}
C7.list gen = {e} C8.list gen = {c}

Figure 2 depicts the formal concept lattice associated to the formal context
K, presented in Figure 3. A sketch of some minimal generators, indicated by
dotted lines, are decorating formal concepts nodes.

GenAll Algorithm: Decorating Galois lattice with minimal generators 175

4 Experimental results

We implemented the Nourine et al. and GenAll algorithms in C on a Linux
platform with a Mandrake distribution to assess their relative performances.
Both algorithms used the same data structure. Our experiments were carried
out on Pentium IV with CPU clock rate of 2Ghz and 512Mb of main memory.
To examine the practical efficiency of our algorithm, we run experiments on real
and synthetic datasets, whose characteristics are detailed in what follows.

4.1 Test data

Hence the results depend on the dataset density, algorithms were tested on
two types of datasets: synthetic data, which mimic market basket, and dense
datasets, which belong to the domain of statistical databases. All these test
datasets are freely available on Internet4. Chess base is derived from steps of
chess game. Typically, real datasets are very dense. We also chose some synthetic
databases. Generally, synthetic datasets are sparse compared to real ones.

4.2 Computational experiments

In the sequel, we assess performances of Nourine et al. and GenAll algorithms
both on sparse and dense datasets.
Case of sparse datasets: For this type of datasets, the list of successors as-
sociated to a given formal concept changes frequently. Thus, comparisons of all
the list of immediate successors will be carried out. Given that the successor list
of the formal concept is long, in sparse datasets compared to that of the dense
datasets, the step of updating the immediate successor list consumes more time
comparatively to the Nourine et al. algorithm [10], in which this comparison is
not performed. Indeed, this algorithm calculates, in each step, only the imme-
diate predecessor list of each formal concept. Hence,an important factor in the
performance of the algorithm is the average length of the transaction. In fact,
the smaller the number of items per transaction is, the faster the GenAll algo-
rithm, for determining formal concepts and their underlying order.
Case of dense datasets: The number of reported formal concepts is by far
more important than that obtained for sparse datasets. This will slacken the
corresponding execution time compared to that of sparse datasets. From the
point of view of execution time, we noticed that the list of immediate successors
does not change frequently as it is the case for sparse datasets.

4.3 Relative performances of Nourine and GenAll algorithms

In what follows, we will put the focus on comparing performances pointed out
by GenAll algorithm and those obtained by Nourine et al. algorithm [10], in

4 http://fimi.cs.helsinki.fi/data

176 Sondess Ben Tekaya, Sadok Ben Yahia, Yahya Slimani

the context of formal concept discovery and their underlying partial order. The
behavior of both algorithms is somehow different for different levels of density.

According to Figure 5, we note that the GenAll algorithm largely outper-
forms Nourine et al. algorithm, especially on dense datasets. Indeed, the time
ratio is very large (the average is 40 and sometimes reaches 83). However, ac-

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

E
xe

cu
tio

n
tim

e
(s

ec
)

|O| (# transactions)

T10I4D1K

GenAll
Nourine

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400 1600

E
xe

cu
tio

n
tim

e
(s

ec
)

|O| (# transactions)

Kosarak

GenAll
Nourine

Fig. 4. Execution time of Nourine et al. and GenAll algorithms (case of sparse

dataset)

cording to Figure 4, Nourine et al. algorithm and GenAll show similar perfor-
mances on sparse datasets. The behavior of the sparse dataset Kosarak, com-
pared to the remaining sparse datasets is noteworthy. In fact, the execution time
of the GenAll algorithm [16] on the Kosarak base is slightly lower than that
of Nourine et al. [10].

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
tim

e
(s

ec
)

|O| (# transactions)

Chess

GenAll
Nourine

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900

E
xe

cu
tio

n
tim

e
(s

ec
)

|O| (# transactions)

C20D10K

GenAll
Nourine

Fig. 5. Execution time of Nourine et al. and GenAll algorithms (case of dense data)

5 Conclusion

We proposed a new algorithm for the construction at the same time the set of
formal concepts, its underlying order and the determination of the set of minimal
generators associated to each formal concept. GenAll algorithm [16] performs
only one scan on the datasets. We conduced a comparison of performances of
two algorithms : GenAll and Nourine et al. algorithms. The results shows that
GenAll outperforms largely Nourine et al. algorithm on dense datasets.

GenAll Algorithm: Decorating Galois lattice with minimal generators 177

By using the algorithm output, the derivation of the generic bases for the rules
of association can be performed in a straightforward manner. In the near future,
we plan to tackle two issues. Firstly, we try to improve Genall performances by
using advanced data structures to reduce the retrieval operations cost. Secondly,
we propose to examine the potential benefits of a parallel version of GenAll

algorithm on a MIMD machine (IBM SP2 with 32 processors).

References

1. Agrawal, R., Skirant, R.: Fast algorithms for mining association rules. In: Pro-

ceedings of the 20th International Conference on Very Large Databases, Santiago,

Chile. (1994) 478–499

2. Zaki, M.: Mining Non-Redundant Association Rules. Data Mining and Knowledge

Discovery (2004) 223–248

3. BenYahia, S., Nguifo, E.M.: Approches d’extraction de règles d’association basées

sur la correspondance de Galois. Ingénierie des Systèmes d’Information (ISI),

Hermès-Lavoisier 3–4 (2004) 23–55

4. Zaki, M.J., Hsiao, C.J.: CHARM: An efficient algorithm for closed itemset min-

ing. In: Proceedings of the 2nd SIAM International Conference on Data Mining,

Arlington. (2002) 34–43

5. Pei, J., Han, J., Mao, R., Nishio, S., Tang, S., Yang, D.: Closet: An efficient algo-

rithm for mining frequent closed itemsets. In: Proceedings of the ACM SIGMOD

DMKD’00, Dallas,TX. (2002) 21–30

6. Pasquier, N.: Data Mining : algorithmes d’extraction et de réduction des règles

d’association dans les bases de données. Doctorat d’université, Université de

Clermont-Ferrand II, France (2000)

7. Valtchev, P., Missaoui, R., Lebrun, P.: A fast algorithm for building the hasse

diagram of a galois lattice. In: Proceedings of the Colloque LaCIM 2000,Montréal

(CA). (2000) 293–306

8. Kuznetsov, S., Obedkov, S.: Comparing performance of algorithms for generating

concept lattices. JETAI 14 (2002) 189–216

9. Floc’h, A.L., Fisette, C., Missaoui, R., Valtchev, P., Godin, R.: JEN : un algorithme

efficace de construction de générateurs pour l’identification des règles d’association.

In: Numéro spécial de la revue des Nouvelles Technologies de l’Information, Vol. 1

No. 1, Editions Cépaduès. (2003) 135–146

10. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information

Processing Letters (1999) 199–214

11. Fu, H., Nguifo, E.M.: Etude et conception d’algorithmes de génération de concepts

formels. Revue Ingénierie des Systèmes d’Information 9 (2004) 109–132

12. Barbut, M., Monjardet, B.: Ordre et classification. Algèbre et Combinatoire. Ha-

chette, Tome II (1970)

178 Sondess Ben Tekaya, Sadok Ben Yahia, Yahya Slimani

13. Pfaltz, J.L., Taylor, C.M.: Scientific discovery through iterative transformation

of concept lattices. In: Proceedings of Workshop on Discrete Applied Mathemat-

ics in conjunction with the 2nd SIAM International Conference on Data Mining,

Arlington. (2002) 65–74

14. Bastide, Y., Pasquier, N., Taouil, R., Lakhal, L., Stumme, G.: Mining minimal

non-redundant association rules using frequent closed itemsets. In: Proceedings of

the International Conference DOOD’2000, Lecture Notes in Computer Sciences,

Springer-Verlag. (2000) 972–986

15. Guigues, J., Duquenne, V.: Familles minimales d’implications informatives

résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines

(1986) 5–18

16. BenTekaya, S., BenYahia, S., Slimani, Y.: Algorithme de construction d’un treillis

des concepts formels et de détermination des générateurs minimaux. In: Proceed-

ings of the 7th African Conference on Research in Computer Science. (2004, Tunis)

247–254

