
Rule Based Fragment Allocation in Distributed
Database Systems

Mohammad Reza Abbasifard

MODB Lab., School of Computer Engineering,
Iran University of Science and Technology,

Tehran 1684613114,Iran

Abstract. Allocating data fragments in distributed database systems
is an important issue in distributed database (DDB) systems. In this re-
search work, we will show how rule based policy languages can be used to
represent different data fragment allocation techniques. Results indicate
that, using rule based languages like prolog can significantly simplify the
representation of such algorithms for any further developments and op-
timizations. Our examples show that our approach can be extended to
be used in different areas of distributed systems.

Keywords: Fragment Allocation, Rule Based Policies

1 Introduction

Developments in distributed algorithms, network technologies, and database the-
ory in the past few decades led to advances in distributed database systems
(DDS). A DDS is a collection of database nodes connected by a communica-
tion network, in which each node is a database system in its own right, but the
nodes have agreed to work together, so that a user at any node can access data
anywhere in the network exactly as if the data were all stored at the userś own
node.

The primary concern of fragmentation in a DDS is to show how data should
be divided and distributed among nodes in the underlying database. Fragmen-
tation problem in a DDS is how to divide the data while allocation issue means
how those fragments should be distributed over different DDS nodes. The data
allocation problem, is NP-complete, and thus requires fast heuristics to gener-
ate efficient solutions [1]. Furthermore, the optimal allocation of database ob-
jects highly depends on the query execution strategy employed by a distributed
database system, and the given query execution strategy usually assumes an
allocation of the fragments.

A major cost in executing queries in a distributed database system is the data
transfer cost incurred in transferring relations (fragments) accessed by a query
from different nodes to the node where the query is initiated. The objective of a
data allocation algorithm is to determine an assignment of fragments at different
nodes so as to minimize the total data transfer cost incurred in executing a set



2 Mohammad Reza Abbasifard

of queries. This is equivalent to minimizing the average query execution time,
which is of primary importance in a wide class of distributed conventional as
well as multimedia database systems.

An optimal, but not practical, solution for fragment allocation in DDS has
been appeared in [2]. There are also a few fragment allocation algorithms [3–
8] that are proven to be practical and show a reasonable performance. Several
surveys of those algorithms are provided by [9–12]. Since all of these fragment al-
location algorithms are expressed and implemented by imperative programming
languages, they are usually difficult to understand and configured.

In this paper, using declarative rule based languages, we propose a novel
technique that can be used to represent fragment allocation algorithms. In our
technique, we consider fragment allocation strategy as a rule-based policy, im-
plemented in a logic programming framework. The declarative representation of
fragment allocation algorithms results in two major benefits: (1) since declara-
tive representation of algorithms are much simpler than imperative ones, these
algorithms can be changed and improved simpler when they are represented by
rule-based languages; (2) the reasoning components of these algorithms can be
relied on logic programming frameworks, and thus we will have simpler imple-
mentation of fragment allocation components in DDS. This technique also can
be used to improve existing DDS fragment allocation simulators [13].

The rest of this paper is structured as follows: in section 2 we will briefly re-
view some of major parameters of fragment allocation problem, section 3 is about
our representation technique and section 4 briefly explains the implementation
of our prototype model. Finally section 6 is our conclusion.

2 Fragment Allocation Problem

Fragment and data allocation algorithms are categorized into two major groups:
static and dynamic. In static fragment allocation algorithms, data allocation
has been completed prior to the design of a database depending on some static
data access patterns and/or static query patterns. However, dynamic fragment
allocation algorithms can change the data fragment allocation automatically
during the deployment of the database. In a dynamic environment where these
probabilities change over time, the static allocation solution would degrade the
database performance.

Depending on the complexity of a data allocation algorithm, it may take the
following parameters as inputs:

1. The fragment dependency graphs.
2. Unit data transfer costs between nodes.
3. The allocation limit on the number of fragments that can be allocated at a

node.
4. The query execution frequencies from the nodes.

The fragment dependency graph models the dependencies between the frag-
ments and the amount of data transfer incurred to execute a query. A fragment



Rule Based Fragment Allocation in Distributed Database Systems 3

dependency graph (as shown in figure 1) is a rooted directed acyclic graph with
the root as the query execution site (Node Q in Figure 1) and all other nodes
as fragment nodes (Node G, etc., in Figure 1) at potential nodes accessed by a
query.

Q

J

G E

Fig. 1. A sample fragment allocation graph.

Assume that rij indicates the frequency of requirements by node i for frag-
ment j, each fragment i is characterized by its size, ni and tij indicates the cost
for node i to access a fragment located on node j. Clearly, tij is a function of
the following parameters:

– The average size of data fragments: sj .
– The bandwidth of network link between i and j: wij .
– The delay of network link between i and j: dij .
– Other types of costs on network link between i and j, e.g. communication

expenses: oij .

Fig. 2. A sample network parameters.

Therefore, users of the distributed database systems must be able to define
tij for a fragment allocation algorithm based on the above mention parameters.
Moreover, the frequency of the execution of each type k of the queries executed
by node i on data item j, fijk, is another important factor for the fragment
allocation algorithm. Note that, different types of database queries have dif-
ferent transfer costs. For instance, select (se) queries (specially those require
joins on tables) may require large data transfers while update (up) and delete
(de) queries do not require large data transfers. In fact, an efficient fragment
allocation algorithm results in minimization of execution cost, which is shown
in (1).



4 Mohammad Reza Abbasifard

∑
k∈{se,up,de}

m∑
i=1

n∑
j=1

fijk (1)

The distributed database allocation problem is to find the optimal placement
of the fragments at the nodes. That is, we wish to find the placement, P =
{p1, p2, p3, . . . , pj , . . . , pn} (where pj = i indicates fragment j is located at node
i) for the n fragments so that the capacity of any node is not exceeded, that is
shown in (2).

m∑
i=1

rijnj ≤ cij (2)

Moreover, the total transmission cost, shown in (3), should be minimized [8].

m∑
i=1

n∑
j=1

rijtij (3)

By restricting the use of the requirements matrix and having zero transmis-
sion cost, the distributed database allocation problem can be transformed to the
bin packing problem, which is known to be NP-complete.

3 Methodology

In this paper, our goal is to develop a flexible and dynamic fragment allocation al-
gorithm. Clearly, such algorithm must be considered as a distributed algorithms.
Otherwise, adding a coordinator node can drastically decrease the flexibility of
such algorithm. At the first glance, developing such distributed algorithm may
look difficult as distributed logic programming and rule based frameworks are
required for such algorithm. But, fortunately, this problem is not as difficult as
what it looks. Because synchronizing the fragment allocation and its parameters,
each node can act independently while we make sure the result of our executions
for different nodes are same. Then, we just need to represent our fragment al-
location algorithm using a rule based language and make sure the rules of each
node and facts are properly synchronized.

delay(1,3,5).

...

reverse_bandwidth(1,3,0.5).

...

other(1,3,5).

Fig. 3. Representation of network as a set of facts.

In order to develop a fragment allocation algorithm in a rule-based language,
first we need to represent above mentioned parameters as sets of facts. Then,



Rule Based Fragment Allocation in Distributed Database Systems 5

we need to develop our algorithm in terms of rules—similar to representation
of policies using rule based languages. Obviously, the set of rules defining the
fragmentation algorithm should be synchronized in each node as well.

The over all representation of network parameters in a rule based language
is simple and natural. We can use simple sets of facts to represent sj , wij , dij ,
and oij . For instance, Figure 3 shows that the delay between node 1 and 3 is 5
milliseconds, the reverse of the bandwidth is 05 1/mega-bytes, and the cost of
communication for each mega-byte is 5 dollars. Then, tij can be computed as
shown by (4), where γij represents the user defined factors. This computation
will be translated to a rule in our algorithm. Figure 4 shows a sample translation
of such computation.

tij = γij × sj × wij × dij × oij (4)

transfer_cost(I,J,T) :- user_defined_parameter(I,J,U),

size(J,S),

reverse_bandwidth(I,J,W),

delay(I,J,D),

other(I,J,O),

T is U*S*W*D*O.

Fig. 4. Representation of the computation of tij in our algorithm.

Similarly, the execution statistics, fijk can also be generated as a set of fact by
the execution engine of DDS. The pre-defined parameter to show the execution
cost of query type k on node i for the fragment j, eijk, is also defined as a fact
by users. Therefore, for the simplest fragment allocation policy, where fragments
are moved if the execution cost is larger than fragment relocation cost. In such
algorithm, the trigger for moving the data item j from i1 to i2, movei1i2j , can
be computed through the following rule:

movei1i2j ←−
∑

k∈{se,up,de}

fi1jk ≤ ri1jti1j ∧ (5)

∑
k∈{se,up,de}

fi2jk > ri2jti2j

Accordingly, this trigger runs two major events: physically moving the data
item j from i1 to i2 and updating fragment allocation information in all of the
nodes. Using rules of type (4) and (5), the inference engine needs to respond to
the query (6), where X, Y , and Z are variables bound by inference engine. The
result of such query will be used to activate triggers.

?− moveX,Y,Z . (6)



6 Mohammad Reza Abbasifard

Simply, one can use prolog assert and retract instructions in synchronization
unit to update fragment allocation information. Based on this executions, the
main procedure of fragment allocation component can be developed as shown in
Figure 5.

1: function FRAGMENT ALLOCATION
2: while true do
3: Run synchronization unit
4: Update execution statistics
5: if Any facts updated then
6: Re-run the inference engine and query the moveX,Y,Z triggers.
7: if There exists any trigger whose source is me then
8: Run the fragment transfer unit
9: end if

10: else
11: Wait for synchronization period
12: end if
13: end while
14: end function

Fig. 5. The main procedure in fragment allocation component.

As mentioned before, rule based representation of fragment allocation al-
gorithm makes those algorithms simple and easy to understand. For instance,
let ai1i2 be a fact representing that there is a direct link between i1 and i2.
Therefore, NNA [4] fragment allocation algorithm can be simply represented as

movei1i2j ←−
∑

k∈{se,up,de}

fi1jk ≤ ri1jti1j ∧ (7)

∑
k∈{se,up,de}

fi2jk > ri2jti2j ∧

ai1i2

Similarly, FNA [5][3] and BGBR [6] parameters can be imported to our al-
gorithms. Complicated reasoning for FNA also needs supporting Fuzzy logic
resolutions and libraries by resolution frameworks.

4 Implementation

As mentioned in the previous section, in our approach, each node is considered
as an independent system, synchronized with other nodes on fragment allocation
mechanisms. Figure 6 shows the design of a node in our DDS. We are still working
on the implementation of this project. The inference engine in our system will



Rule Based Fragment Allocation in Distributed Database Systems 7

Fig. 6. Design of a single node in a DDS.

be XSB Prolog [14]. The implementation will be evaluated using the parameters
introduced in [3, 4].

Synchronization is one of the most important components of our system.
Synchronization is repeated in a period of time. The frequency of synchroniza-
tion also depends on the speed of the execution of fragment allocation algorithm
by inference engine. Apparently, each node must wait until receive the synchro-
nization information from the rest of the nodes before each execution of the
fragment allocation algorithm.

5 Conclusion

In this paper, we discussed a novel method for representing fragment allocation
algorithms in a rule based system. Our results show that such representation
makes a fragment allocation algorithm. The simplicity of the resulted algorithm
can help one to extend existing algorithms and improve their performances.
Moreover, the simplicity of the resulted algorithms eases configuring fragment
allocation component in DDS.

We are planning to investigate using defeasible reasoning and argumentation
theory [15][16] to extend our developments. Another promising direction for this
research is to investigate other rule based system, e.g. Answer Set Programming
[17][18] , and possibly get more speedups.

References

1. Meghini, C., Thanos, C.: The complexity of operations on a fragmented relation.
ACM Trans. Database Syst. 16(1) (March 1991) 56–87

2. Morgan, H.L., Levin, K.D.: Optimal program and data locations in computer
networks. Commun. ACM 20(5) (May 1977) 315–322

3. Basseda, R., Rahgozar, M., Lucas, C.: Fuzzy Neighborhood Allocation (FNA): A
Fuzzy Approach to Improve Near Neighborhood Allocation in DDB. In: Advances
in Computer Science and Engineering: 13th International CSI Computer Confer-
ence, CSICC 2008 Kish Island, Iran, March 9-11, 2008 Revised Selected Papers.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009) 834–837

4. Basseda, R., Tasharofi, S., Rahgozar, M.: Near neighborhood allocation (nna): A
novel dynamic data allocation algorithm in ddb. In: 11th International Computer
Society of Iran Computer Conference (CSICC2006)



8 Mohammad Reza Abbasifard

5. Basseda, R., Rahgozar, M.: A novel fuzzy approach to improve near neighborhood
allocation algorithm in ddb. In: 2009 IEEE/ACS International Conference on
Computer Systems and Applications. (May 2009) 571–578

6. Bayati, A., Ghodsnia, P., Rahgozar, M., Basseda, R.: A novel way of determining
the optimal location of a fragment in a ddbs: Bgbr. In: Systems and Networks
Communications, 2006. ICSNC ’06. International Conference on. (Oct 2006) 64–
64

7. Ahmad, I., Karlapalem, K., Kwok, Y.K., So, S.K.: Evolutionary algorithms for al-
locating data in distributed database systems. Distributed and Parallel Databases
11(1) (2002) 5–32

8. Corcoran, A.L., Hale, J.: A genetic algorithm for fragment allocation in a dis-
tributed database system. In: Proceedings of the 1994 ACM Symposium on Ap-
plied Computing. SAC ’94, New York, NY, USA, ACM (1994) 247–250

9. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical partitioning algorithms for
database design. ACM Trans. Database Syst. 9(4) (December 1984) 680–710

10. Apers, P.M.G.: Data allocation in distributed database systems. ACM Trans.
Database Syst. 13(3) (September 1988) 263–304

11. Brunstrom, A., Leutenegger, S.T., Simha, R.: Experimental evaluation of dynamic
data allocation strategies in a distributed database with changing workloads. In:
Proceedings of the Fourth International Conference on Information and Knowledge
Management. CIKM ’95, New York, NY, USA, ACM (1995) 395–402

12. Basseda, R., Tasharofi, S.: Data allocation in distributed database systems. Tech-
nical report, University of Tehran: Technical Report No. DBRG. RB-ST (2005)

13. Basseda, R., Tasharofi, S.: Design and implementation of an environment for
simulation and evaluation of data allocation models in distributed database sys-
tems. Technical report, University of Tehran: Technical Report No. DBRG. RB-ST
(2005)

14. Swift, T., Warren, D.S.: Xsb: Extending the power of prolog using tabling. (2011)
15. Wan, H., Grosof, B.N., Kifer, M., Fodor, P., Liang, S.: Logic programming with

defaults and argumentation theories. In Hill, P.M., Warren, D.S., eds.: Logic Pro-
gramming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July
14-17, 2009. Proceedings. Volume 5649 of Lecture Notes in Computer Science.,
Springer (2009) 432–448

16. Basseda, R., Gao, T., Kifer, M., Greenspan, S., Chell, C.: Representing flexible role-
based access control policies using objects and defeasible reasoning. In Bassiliades,
N., Gottlob, G., Sadri, F., Paschke, A., Roman, D., eds.: Rule Technologies: Foun-
dations, Tools, and Applications - 9th International Symposium, RuleML 2015,
Berlin, Germany, August 2-5, 2015, Proceedings. Volume 9202 of Lecture Notes in
Computer Science., Springer (2015) 376–387

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R.A., Bowen, K.A., eds.: Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, August 15-19, 1988
(2 Volumes), MIT Press (1988) 1070–1080

18. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: The potsdam answer set solving collection. AI Commun. 24(2)
(2011) 107–124


