
On the Use of Provalets in a Predictive
Maintenance Use Case

Adrian Paschke

Freie Universitaet Berlin, Germany
paschke@inf.fu-berlin.de

Abstract. In this paper we report on a predictive maintenance use cases
using Provalet rule agents for implementing expressive rule-based stream-
ing analytics and decision logic on top of online machine learning predic-
tion models, which are dynamically applied to the streaming data coming
from on-board asset monitoring sensors. Provalets are component-based
mobile agents for rule-based inference analytics, which can be dynami-
cally deployed as microservices into container environments via simple
REST calls.

1 Introduction

More and more streams of data are being generated in real-time from a myriad
of data sources, such as market data, mobile devices, Internet of Things (IoT)
sensors, clickstream analysis as well as business internal transactional systems.
Real-time insights (by reactive analytics) and predictions (by predictive ana-
lytics) must be derived from this data in motion to give a competitive edge to
agile organizations that want to proactively act on these insights before they lose
their value. Instead of collecting and analyzing all this data only in a centralized
cloud, new distributed microservices architectures and mobile software agents
for moving the streaming analytics and inference logic closer to the data sources
at the edge (edge analytics) or fog (fog computing) are needed.

As a solution Provalets [11, 12] support an easy to use component-based
microservice architecture for mobile rule agents. They act as a basis for an
analytics-as-a-service business model, where data-driven inference and analytics
operations are provided as component-based Provalet agents. Provalets encap-
sulates data intensive rule-based data processing and inference reasoning with
decision and reaction logic [10] into rule-based Prova agents [13] 1, which are de-
ployed as microservices into standardized containers such as Docker and trusted
OSGi [8] container environments. Via REST-based interfaces Provalets can in-
teract and can be composed to data analytics/inference pipelines. Instead of
sending all data to a centralized external provider, the processing and inference
agents can be moved closer to the data and their execution remains in the con-
trol of the data producer. Hence, privacy problems are avoided and additional

1 http://prova.ws



2 Adrian Paschke

permissions can be defined in the agents metadata and policies, so that the con-
trolled Provalet container environment can enforce them and reject agents that
request permissions that cannot be granted.

This paper will report on an industrial use case for Provalets in predictive
maintenance. In the manufacturing industry high value is associated with the
early discovery, warning, prediction, and prevention of anomalies by proactively
triggering optimized maintenance actions. In condition-based maintenance sen-
sors monitor the normal operating conditions of an asset and conduct mainte-
nance based on the conditions assessed by the sensors. This requires efficient
streaming analytics and continuous online machine learning of the prediction
models in combination with event-based reaction rules / logic. The data pro-
cessing and analytics should be done as close as possible to the IoT sensors
(and gateways), in order to address typical problems such as security, privacy,
scalability, reliability (e.g. offline connection problems), etc.

The further paper is structured as follows: In section 2 we begin by explain-
ing the background of machine learning and streaming analytics / event pattern
mining approaches in predictive maintenance. In section 3 we describe a predic-
tive maintenance use case. We then summarize the core principles of Provalets
in section 4 and describe the implementation in section 5. We summarize the
application in section 6.

2 Background

In today’s industrial processes real-time insights into the underlying data and
event streams to trigger optimal reactions and make situation-aware decisions are
crucial for the business competitiveness. While real-time reactions on detected
complex events are important, the goal is to predict critical event occurrences
before they actually happen and to trigger proactive actions. Figure 1 illustrates
this rapidly decreasing knowledge value of events.

Fig. 1. Knowledge Value of Events in Streaming Analytics



On the Use of Provalets in a Predictive Maintenance Use Case 3

For instance, in maintenance the value, e.g. in terms of life time and reliabil-
ity of an asset/system, increases from pure reactive maintenance to preventive
maintenance and predictive maintenance and further to maintenance optimiza-
tion, as shown in figure 2.

Fig. 2. Knowledge Value in Maintenance Analytics

While reactive maintenance tries to detect and react to failures in real-time,
predictive maintenance foresees the breaking point of a system before it actu-
ally occurs and a chain of preventive and service reactions are triggered be-
fore expensive damages can occur. In more detail, the aims are to (1) reduce
maintenance costs, e.g. by avoiding the entire system from getting harmed fur-
ther by breakdowns (corrective / reactive maintenance), and by avoiding costs
caused by scheduled, interval-based, preventive replacement of still functioning
pieces (preventive maintenance), and (2) avoid breakdowns by triggering predic-
tive maintenance activities as they are necessitated by their predicted life time
or costs with respect to the actual conditions of the target system (predictive
maintenance). Condition-based maintenance sensors continuously monitor the
asset during normal operating conditions and a maintenance action is triggered
based on their assessment. Modular maintenance optimization can further re-
duce costs and exploit synergy effects, e.g. by replacing components during light
maintenance operations and thus bundling multiple predicted condition-based
maintenance actions into one.

In contrast to reactions based on learned patterns from historic data, the
challenge in condition-based maintenance is to predict unknown complex event
patterns and abnormal episodes (anomaly detection) that did not occur in the
system’s past before. Different approaches can be distinguished such as:

– Supervised Anomaly Detection:
The anomaly is an already known class and used to label the data records



4 Adrian Paschke

for supervised learning of the anomaly classification model. This approach is
applied for recurring anomalies, but it cannot be used for unknown anoma-
lies.

– Static Unsupervised Anomaly Detection:
The underlying solution idea is to learn the normal classes / event patterns
from the monitored (sensor) data and detect anomalies as sudden occurrence
of an unrecognized patterns.

– Dynamic Unsupervised Anomaly Detection:
The system slowly deviates from past norms until an abnormal event is
triggered, e.g. by exceeding the norms threshold. For instance, reliability
measures, such as Mean Time Before Failure (MTBF), are used to scheduled
preventive maintenance activities, where the goal ist to keep it running as
long as possible, but avoid the system to break down completely, producing
even more damage.

– Analysis of Time Series Data and Event Instance Sequences of the system:
Allows to learn (machine learning) possible asset degradation models from
time series data and detect anomalies with mined event patterns / episodes in
order to base maintenance on continuously monitored conditions (condition-
based / predictive maintenance). The conditions can be simple thresholds
on a predicted decay trend, but can be also more complex event patterns
and rules, taking into account the current conditional situation and event
instance history.

In this use case we focus on condition-based predictive maintenance. The
degradation models can be defined by physical laws determining the correct
behavior of the asset or they can be learned from time series data by machine
learning approaches. A common approach for the latter is to perform a regression
analysis based on the data that comes from the sensors that are continuously
monitoring the asset conditions. Figure 3 illustrates a typical regression analysis
process.

Fig. 3. Typical Process in Regression Analysis

Splitting the dataset into a training set and a test set, and selecting the right
data has a direct impact on the quality of the final regression model. Hence,



On the Use of Provalets in a Predictive Maintenance Use Case 5

instead of random data selection the semantics and distribution topology of the
data can be used to select the right training data with respect to the observed
data events. Different (increasing) sizes of training data need to be tested (in
the example figure it is 50-50%) to achieve an accurate and statistical relevant
training model.

Classical regression approaches [16] try to find the best approximating func-
tion which should be close to an unknown distribution function over an input
space and output space sampled from a set of training data D = (x1, y1), ..., (xn, yn).
The quality in terms of average difference between the estimated and the actual
outcome is measured by a loss function in the training phase.

Model selection then has the goal to select a final model that does not over-
or underfit the given available data. Empirical risk minimization (minimization
of the empirical error) typically leads to overfitting of the model. Costs functions
are used to optimize the tradeoff between accuracy of the model and complexity
of computing the approximation function. By properly tuning one or more hy-
perparameters in the tuning phase of the model selection the trade-off between
the overfitting and underfitting tendency are regulated. However, finding the
right values for the hyperparameters is problem-dependent and non-trivial.

Various ML approaches, from basic linear regression, random forest regres-
sion (RFR)[6] to support vector machines for regression[17], can be applied which
not just support single outputs, but also multi-outputs. This includes approaches
for transfer learning [9], multi-task learning [4] as well as solutions to decompose
the multi-output problem into several single-output problems. In the Regular-
ized Least-Squares (RLS) algorithm [1] the approximation function applies a
non-linear mapping allowing to still coping with linear models by exploiting the
representer theorem [15] and by reformulating the RLS problem using a kernel
function[3], such as a positive definite Gaussian kernel (which is learning every
possible function). The complexity is measured, e.g. with Euclidean norm of
the set of weights describing the regressor. The loss function adopts, e.g. mean
squared error loss. An alternative to RLS for searching the approximation func-
tion are Support Vector Models for Regression (SVMR) [17]. In contrast to RLS,
where the solution is dense and the computational burden is high, the sparse so-
lution of SVMR can be described by using only a limited subset of parameters.
Accordingly it requires less training data and the computational burden is lower.
Similar to RLS the SVMR training problem is reformulated using a kernel ma-
trix formulation.
For tuning the hyperparameters of RLS and SVMR either rule of thumb heuris-
tics or an exhaustive search for the optimal solutions is performed by solving
SVMR /RLS multiple-times with different hyperparameters values. By estimat-
ing the generalization error of the regressor, e.g. using k-fold cross validation
(KCV), the best hyperparameter values are found and the final model is trained
with the values.

While these regression approaches are applied ex-post to the previously col-
lected batch data and the model is computed only once, in Online SVMR (OS-
VMR) [7] the regression parameters are incrementally increased or decreased



6 Adrian Paschke

each time a new sample is added. The model selection function is iteratively tun-
ing the hyperparameters and recomputing the KCV validation. In order to bal-
ance the trade-off between expensive computational time and resources needed,
and the accuracy of the selected model, Fumeo et al.[5] suggest a meta-heuristic
optimization approach with an online KCV approach, which is exploiting the
assumption that the set of hyperparameters will not vary too much from the
previous computed best values, if the new updated data samples are not too
large.

The (continuously) trained regression model acts as degradation model, which
can be applied for regression prediction, i.e. predicting e.g. a trend in the decay
of an asset. By defining a threshold it becomes possible to predict and decide
when maintenance must be done, in order to avoid a breakdown. Figure 4 gives
an example line plot displaying the predicted trend evolution of an asset’s decay
and defines a threshold used to trigger a proactive maintenance activity in order
to avoid a breakdown.

Fig. 4. Example Degradation Analysis with Maintenance Threshold

While this simple threshold-based maintenance trigger is an appropriate ap-
proach for degradation models with a clear linear trend applied to one particular
component/asset, more sophisticated approaches are needed, if larger numbers
of components and situation-awareness needs to be considered. Here one single
occurrence of a threshold event might not be enough. A correlation between
multiple events, possibly based on conditional situations, is required for predict-
ing and triggering the predictive maintenance action. This leads to the need of
complex event patterns and conditional rules.

Event Pattern Mining approaches learn patterns over time from event in-
stance sequences (EIS). EIS are analyzed according to their occurrence and
structure in order to mine, e.g. frequent patterns, association rules, time-series,
episodes, and many more. Traditional Pattern Mining can retrieve various sorts
of patterns as highlighted in Figure 5 and in [14]. These are split into basic,
multidimensional and extended patterns and rules.



On the Use of Provalets in a Predictive Maintenance Use Case 7

Patterns and Rules

Basic

Association Rules

Frequent Patterns

Closed/Max 
Patterns

Multidimensional

Multilevel

Multidimensional

Discretization

Extended

Approximate
Patterns

Uncertain Patterns

Compressed
Patterns

Rare/Negative 
Patterns

High-dimensional/
Colossal Patterns

Fig. 5. Overview on Patterns and Rules

Figure 6 provides an overview on pattern mining research. General pattern
mining methods are differentiated from applications and extensions. The Mining
methods are split up into the basic methods, interesting patterns2, distributed,
parallel and incremental patterns, and extended patterns and pattern-based ap-
plications. The subcategories are explained in more detail in [14].

3 Predictive Maintenance Use Cases

The use case is based on a data source3 from a numerical simulator of a naval
vessel (Frigate) characterized by a Gas Turbine (GT) propulsion plant, consist-
ing of components such as Propeller, Hull, GT, Gear Box and Controller. [2].
The data takes into account the performance decay over time of the GT compo-
nents such as GT compressor and turbines. The propulsion system behaviour is
described by the parameters:

– Ship speed (linear function of the lever position lp).

– Compressor degradation coefficient kMc.

– Turbine degradation coefficient kMt.

2 The interestingness of a pattern is determined by means of the following criteria:
conciseness, coverage, reliability, peculiarity, diversity, novelty, surprisingness, util-
ity and actionability. These nine criteria can be further classified into objective and
subjective patterns.

3
http://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants



8 Adrian Paschke

Research on Pattern Mining

Mining Methods Extensions 
and Application

Basic Mining 
Methods

Mining Interesting
Patterns

Distributed, Parallel
And Incremental

Candidate
Generation

Pattern Growth

Vertical Format

Interstingness

Contraint-Based

Exception
Rules

Correlation
Rules

Distributed / 
Parallel Mining

Incremental
Mining

Stream Pattern 
Mining

Extended Patterns

Sequential and 
Time-Series

Structural

Spatial

Temporal

Image, Video,
Multimedia

Network

Pattern-Based
Applications

Classification

Clustering

Semantic 
Annotation

Collaborative
Fitlering

Privacy
Preserving

Fig. 6. Research Overview of Pattern Mining

so that each possible degradation state can be described by a triple (lp, kMt, kMc).

The range of decay of compressor and turbine has been sampled with an
uniform grid of precision 0.001, discretized with a kMc coefficient within [1; 0.95]
and a turbine coefficient within [1; 0.975]. Ship speed is sampled in the range
of feasible speed from 3 knots to 27 knots with a granularity of representation
equal to tree knots. A 16-feature vector (features: e.g. ship speed, high pressure
turbine exit temperature, GT compressor inlet/outlet air temperature, ...) in the
dataset is measuring ships state of the system subject to performance decay. The
dataset is already clean, i.e. there are no missing data values (with two constant
data values for the Compressor Inlet Air Pressure and GT Compressor Inlet Air
Temperature).

Pearson correlation shows that there are correlations between some of the
variables. By feature extraction 8 variables (HP Turbine exit pressure, Gas Tur-
bine shaft torque, GT Compressor outlet air temperature, HP Turbine exit tem-
perature, Turbine Injecton Control, Gas Generator rate of revolutions, Fuel flow,
GT Compressor outlet air pressure). An auto-regressive (AR) model is trained
on the data. By applying ML regression analysis (see section 2) different degra-
dation models are trained. In particular, Online Support Vector Machines for
Regression (OSVMR) [7] updates the trained regression function, whenever a
new data sample is added to and irrelevant ones are discarded from the train-



On the Use of Provalets in a Predictive Maintenance Use Case 9

ing set. This allows continuous OSVMR learning (with a Gaussian kernel and
a non-linear optimization with Karush-Kuhn-Tucker conditions [16]) on the up-
dates from the (simulated) monitoring sensors. Instead of doing a k-fold cross
validation only once, the model selection (tuning the three hyperparameters of
the kernel) is iteratively applied in each update step following the heuristic ap-
proach describe in [5] for optimizing the trade-off between the accuracy of the
OL-SVR models and the computational time and resources needed in order to
build them.

These learned models are used to predict anomaly-free measure values, i.e.
”normal” behaviour. Some boundaries of normal functioning values are then
defined around the average prediction error observed in training. As show in the
line plot in figure 4 the prediction is showing a trend for the compressor decay.
If the prediction error diverts from the boundaries, an alarm is triggered to alert
that is time to inspect the machinery. The following reaction rules recognize the
alarm situation and trigger a reaction:

PE(t)= abs(Prediction(t) x(t))

On each Frequency Band, compressor part

If PE(t) > Mean(PE(t)) + K*stddev(MA(t))

Then alm(t)= PE(t)

ELSE alm(t) = 0

MA(t)= Moving Average(alm(t), N=25, backward window)

IF MA(t) > Threshold Boundary

Do Alarm

4 Principles of Provalets

Provalets have much in common with apps in modern application-stores for mo-
bile platforms. Details about underlying principles and the lifecycle of Provalets
can be found in [11]. Here we briefly recapitulate the main principles.

Provalets are location-independent (mobile) rule-based software agents [13]
which are deployed as microservices in component containers such as OSGi [8].
The implementation of Microservices is a software architecture style designing
software applications as suites of independently deployable services providing
(agent) intelligence in the endpoints, and decentralized control of languages and
data. The Provalet microservices provide functional operations for rule-based
linked data access 4, processing, inference reasoning and reactive messaging us-
ing Prova 5. Prova (Prolog + Java) is both a declarative rule-based programming
language and a Java-based rule engine. Provalets have a clear REST input and

4 Prova has various built-ins for rule-based data access such as Java object access, file
access, XML (DOM), SQL, RDF triples, XQuery, SPARQL

5 http://www.prova.ws]



10 Adrian Paschke

output interface, specifically an input URI and an output URI. They run in
a controlled and secure container environment (OSGi or Docker). Provalets de-
scribe their functionality in terms of pre- and post-conditions on the sets of input
and output data.

The container resource describes itself with metadata via a standardized API.
A user or agent receives information about a container resource by sending an
HTTP request to the container URI. For example, the container resource de-
scribes which permissions it can grant. To use a container resource to execute a
Provalet the user sends an HTTP request adding three parameters to the con-
tainer URI: the Provalet URI, the input URI and the output URI. This way it
is straight forward to execute a Provalet from a standard Web client and lookup
the results afterwards, by receiving the HTTP response of the output URI. Each
Provalet has a unique URI that is resolvable via HTTP. Each Provalet is con-
figured with one input URI that it is allowed to read from and one output URI
that it is allowed to write to. Furthermore, the Provalet artifact address and
the executing container resource need to be defined. The runtime environment
should control which data type formats and which data sources are accessible
by the Provalet including the control of permissions. The Provalet description
also contains semantic metadata about the Provalet including runtime depen-
dencies and policies such as permissions required on the runtime platform as
well as the description of the functionality it provides in the form of statements
about pre- and post-conditions over the sets of input and output data, defini-
tion of types, side-effects, legal norms and policies, etc. This supports automatic
search of Provalets for their composition. The composition of Provalets is either
executed by chaining the input and output connections via a pipes-and-filter
streaming connections with a rule-based composition language or by a generic
injection of mobile Prova code and consumption of their fully processed output.
Typical workflow control constructs, such as sequential execution, parallel exe-
cution, conditional alternatives and repetitions, are supported in the rule-based
composition language, as well as metareasoning and late binding capabilities.

Using conditional Provalet connectors Provalets can be chained and com-
posed together, e.g. by splitting (on incoming input, multiple outgoing outputs)
or joining (multiple incoming, one outgoing output) them. The data flow, e.g. in
data pipelines, captures data dependencies between Provalet components. For
the data passing between components we use Prova’s event messaging rules [19],
which not only can act as “data processors”, but also can be used a basis for rep-
resenting composite events, thereby implementing complex workflow patterns,
especially state-based workflow patterns. In contrast to other related compo-
sition languages, we ground our rule-based composition language [21] on the
logic-based semantics of Concurrent Transaction Logic, CT R [20], which gives a
deductive database language, that integrates concurrency, communication and
database updates in a semantic framework with a sound and complete model
and proof theory.

Provalets describe permissions they require as metadata that is read by the
runtime environment during deployment. By default Provalets are solely allowed



On the Use of Provalets in a Predictive Maintenance Use Case 11

to see the data (streams) which are directly served by the configured input URI.
Provalets may define additional required permission to access other data sources.
For example to access additional static URIs or crawl URIs that are visible in
the set of input data. The sources of data may be restricted by subnets, do-
mains, protocols or even types of data a Provalet is allowed to see. Provalet may
provide HTTP access credentials to the input and output resources upon re-
quest. Provalets must request permission to use additional computing resources
on the machine they are executed. A Provalet may request harddisk space to
store intermediate results. Other resources include memory, CPU time, account
information, access to other web services. The latter can be used by a Provalet
to enforce license models through trusted providers. It is the task of the run-
time container of a Provalet to grant required permissions and allow access to
requested resources.

5 Implementation

For the implementation of this use case we integrate Provalets into Knime data
analytics workflows by implementing an user-defined Knime node for Provalets.
Knime 6 provides a visual workflow language for modelling data analytics pipelines.
We use this for the data preprocessing and AR - regression learning steps in the
workflow, as shown in figure7.

For the abnormal event detection and reactions we define a Provalet that
implements the two alarm rules. Since the input data from the Knime nodes
are using the Predictive Modelling Markup Lanuage (PMML) an additional
translator node is specified in the workflow which translates from PMML into
Prova.

Provalets themselves are Maven OSGi artifacts. To generate a new Provalet
in a Knime workflow a Maven archetype is used. An OntoMaven generated
Provalet project provides all necessary dependencies and mechanism. The in-
cluded Provalet class extends the AbstractProvalet from our ProvaletCore API
and must be filled with the Provalet functionalities. The ProvaletActivator class
extending the AbstractProvaletActivator serves as an OSGi entrance point to
the Provalet. During the Provalet development the developer has to keep at-
tention to only specify dependencies to APIs being OSGi capable. The artifact
specification can be found in the Provalet description.

To execute the Provalet on the selected AR input resource (from the Knime
AR model) the user needs to call the URI of a Knime workflow container resource
(containerURI ) via an HTTP GET request providing the URI of the Provalet
(ProvaletURI ), the input (inputURI ) to the AR input resource and the output
URI (outputURI ), e.g. a REST call, as parameters:

<containerURI>?Provalet=<ProvaletURI>&input=<inputURI>&output=<outputURI>

In the OSGi framework (Apache Felix) the Provalet container bundle is
started. It handles the Provalet call and answers the HTTP request with an

6 https://www.knime.org/



12 Adrian Paschke

Fig. 7. Data Analytics Workflow for Predictive Maintenance

HTTP response message. First it resolves the Provalet characteristics by call-
ing the ProvaletURI and reading the Provalet description which also includes
the necessary artifact characteristics (groupId, artifactId, version and optionally
the repository). The Provalet artifact and all its dependencies are resolved and
downloaded to a local repository using the integrated Aether library [18].

The downloaded Provalet artifact are then deployed into the OSGi frame-
work of the OSGI container resource and the Knime input representation of the
inputURI is passed as an object to the working method of the Provalet. Finally
the container resource starts the installed Provalet bundle. After execution of
the working method the Provalet passed its resulting data back - the reaction
trigger message, to the container. The container checks the contend and enforces
restrictions on the Provalet execution and the output and writes the output rep-
resentation to the outputURI.

Once the instantiated Provalet exists, verification of the Provalet constraints
and rules can be performed using Prova’s inference mechanisms. The OSGi bun-
dle classloader is used to load the resources and instantiate a Provalet instance
as OSGi component with the translated Provalet rules describing the alarm con-
ditions and event pattern constraints.

The Provalet working modes of container resources are defined. Asynchronously
working containers immediately respond with a HTTP response code indicat-
ing that the Provalet working method was successfully started. The user of an
asynchronously started Provalet has in principal two possibilities to work with
the results: (1) an agent polls the output URI after a defined time and (2) the



On the Use of Provalets in a Predictive Maintenance Use Case 13

agent uses a subscription mechanism to be informed about updates in the out-
put URI. In the synchronous working mode of a Provalet container the agent is
redirected to the output URI once the results have been successfully written to
the output URI. In this working mode the user can read the result immediately
after receiving the HTTP response.

6 Summary

In this paper we reported on the use of Provalet microservices for predictive
maintenance, with the goal of combining online machine learning and rule-based
complex event processing / reaction logic. One advantage of Provalets is that
the mobile rule agents can be deployed directly into containers (OSGi, Docker)
running on the gateways or IoT monitoring sensors and hence can process and
analyze the streaming data where it is produced.

7 Acknowledgments

This work has been partially supported by the “InnoProfile-Corporate Smart
Content” project funded by the German Federal Ministry of Education and
Research (BMBF) and the BMBF Innovation Initiative for the New German
Länder - Entrepreneurial Regions.

References

1. A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7(3):331–368, 2007.

2. A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, and M. Figari. Machine
learning approaches for improving conditio-based maintenance of naval propulsion
plants. Journal of Engineering for the Maritime Environment, –(–):–, 2014.

3. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines:
And Other Kernel-based Learning Methods. Cambridge University Press, New
York, NY, USA, 2000.

4. T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. J. Mach. Learn. Res., 6:615–637, Dec. 2005.

5. E. Fumeo, L. Oneto, and D. Anguita. Condition based maintenance in railway
transportation systems based on big data streaming analysis. Procedia Computer
Science, 53:437–446, 2015.

6. A. Liaw and M. Wiener. Classification and regression by randomforest. R News,
2(3):18–22, 2002.

7. J. Ma, J. Theiler, and S. Perkins. Accurate on-line support vector regression.
Neural Comput., 15(11):2683–2703, Nov. 2003.

8. OSGI Alliance. OSGi Service Platform, Core Specification, Release 4, Version 4.2.
Technical report, OSGI Alliance, Sept. 2009.

9. S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. on Knowl.
and Data Eng., 22(10):1345–1359, Oct. 2010.



14 Adrian Paschke

10. A. Paschke. Rules and logic programming for the web. In Reasoning Web. Semantic
Technologies for the Web of Data - 7th International Summer School 2011, Galway,
Ireland, August 23-27, 2011, Tutorial Lectures, pages 326–381, 2011.

11. A. Paschke. Provalets - osgi-based prova agents for rule-based data access. In On
the Move to Meaningful Internet Systems: OTM 2015 Conferences - Confederated
International Conferences: CoopIS, ODBASE, and C&TC 2015, Rhodes, Greece,
October 26-30, 2015, Proceedings, pages 519–526, 2015.

12. A. Paschke. Provalets - component-based mobile agents as microservices for rule-
based data access, processing and analytics. Journal Business & Information Sys-
tems Engineering, 5, 2016.

13. A. Paschke and H. Boley. Rule Responder: Rule-Based Agents for the Semantic-
Pragmatic Web. International Journal on Artificial Intelligence Tools, 20(6):1043–
1081, 2011.

14. R. Schäfermeier, A.-A. Todor, A. La Fleur, A. Hasan, J. Einhaus, and A. Paschke.
Corporate smart content evaluation. Technical Report TR-B-16-02, Freie Univer-
sität Berlin, 2016.

15. B. Schölkopf, R. Herbrich, and A. J. Smola. A Generalized Representer Theorem,
pages 416–426. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

16. B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,
2001.

17. A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics
and Computing, 14(3):199–222, 2004.

18. Sonatype. Aether. http://aether.sonatype.org/, June 2011.
19. Z. Zhao and A. Paschke. Event-driven scientific workflow execution. In Business

Process Management Workshops - BPM 2012 International Workshops, Tallinn,
Estonia, September 3, 2012. Revised Papers, pages 390–401, 2012.

20. Z. Zhao and A. Paschke. A formal model for weakly-structured scientific workflows.
In Proceedings of the 6th International Workshop on Semantic Web Applications
and Tools for Life Sciences, Edinburgh, UK, December 10, 2013., 2013.

21. Z. Zhao, A. Paschke, and R. Zhang. A rule-based agent-oriented approach for
supporting weakly-structured scientific workflows. J. Web Sem., 37:36–52, 2016.


