
What-If Analyzer for DMN-based Decision Models

Jacob Feldman

OpenRules, Inc., 53 Riviera Dr.,

Monroe, NJ 08831, USA
jacobfeldman@openrules.com

Abstract. This paper describes a new web-based graphical tool “What-If

Analyzer for Decision Modeling” that supports what-analysis of different

business decision models created in accordance with the DMN standard. It

allows a user to modify the decision model by activating/deactivating business

rules that represent its decision logic, and immediately see changes in the

decision variables. With a simple click it may produce and navigate through

multiple decisions that satisfy all active rules within the same decision model. If

the decision model specifies a business objective that depends on other decision

variables, then What-If Analyzer may find optimal decisions that minimize or

maximize this objective. What-If Analyzer is implemented as an advanced

component of the popular open source business decision management system

“OpenRules”.

Keywords: Decision Modeling, Decision Optimization, DMN, Multiple and

Optimal Decisions.

1 Introduction

Five years ago we published a paper [1] that described how constraint solvers may

serve as rule engines in the context of modern business rules and decision

management systems. At that time we considered business decision models created

based on the methodological approach described in the book “The Decision Model”

[3]. Since then Object Management Group (OMG) has approved a new standard

“Decision Model and Notation” (DMN) [2] that quickly gained popularity among

decision management vendors, experts, and practitioners. The DMN standard covers

more powerful and complex decision models to compare with [3]. In this paper we are

applying the results of [1] to DMN-based decision models by presenting them as

constraint satisfaction and optimization problems. We also describe a generic

graphical interface that allows a user to do what-if analysis of such decision models

finding multiple feasible decisions and optimal decisions which minimize/maximize

certain business objectives.

In section 2 we provide a formal definition of the DMN-based decision model as a

constraint satisfaction and optimization problem. Section 3 describes a new

OpenRules tool called “What-If Analyzer for Decision Modeling” [10] that utilizes

constraint solvers to do real-time what-if analysis of decision models. This section

demonstrates the major functionality of What-If Analyzer using decision models for

mailto:jacobfeldman@openrules.com

two problems: a simple arithmetic problem and a loan origination example. Section 4

describes how What-If Analyzer has been implemented including the execution

engines, graphical interface, and implementation restrictions. And finally, section 5

describes the related work and future development.

2 Decision Model as Constraint Satisfaction Problem

Formally, a decision model is defined by a set of variables, X = { X1, X2,…, Xn },

and a set of rules, R = { R1, R2,…, Rm }. Each variable Xi has a nonempty domain Di

of possible values. Each rule Ri defines relationships between different variables from

a subset of X and specifies the allowable combinations of values for that subset. A

decision is an assignment of values to all mentioned variables, { Xi=vi, Xj=vj, …},

that satisfies all the rules.

The decision model can produce multiple decisions. Some decision models require a

decision that minimizes/maximizes an objective function, which usually depends on

some variables.

This representation demonstrates that the Decision Model is quite similar to the

classical definition of CSP – see for example Russel and Norvig [4] where a decision

variable Xi corresponds to a constrained variable and where a rule Ri corresponds to a

constraint.

In [1] we had shown how a decision model created in accordance with the

methodological approach [3] can be reformulated is a special case of CSP with using

mainly conditional constraints. As the DMN standard [2] extends decision modeling

functionality beyond [3], we need to extend the results of [1] to handle DMN-based

decision models. In particular, the DMN standard along with simple single-hit

decision tables allows multi-hit decision tables with various hit policies and

aggregation methods. It introduced a special expression language “FEEL” that

includes loops, indexes, and invocation of external functions. These new constructs

may lead us beyond conditional constraints and we will need to show precisely how

each of them can be implemented within a constraint satisfaction environment. This

paper describes a new tool that automatically converts DMN-based decision models

to constrained satisfaction and optimization problems and provides a user-friendly

graphical interface to modify and analyze them. However, as the majority of the

current DMN implementations [5] do not cover (at least yet) advanced DMN

concepts, this paper considers only basic DMN-based decision models without multi-

hit tables and complex FEEL expressions.

3 What-If Analyzer for Decision Modeling

“What-If Analyzer for Decision Modeling” [10] is a stand-alone web application built

on top of OpenRules [6]. Its main purpose is to support what-if analysis of DMN-

based decision models. What-if analysis is the process of changing business rules that

represent business logic to see how these changes affect the outcome of the decision

model. What-If Analyzer functionality includes:

 Downloading a DMN-based decision model

 Showing it graphically by presenting the current state of all decision

variables and all business rules

 Activation/Deactivation of different rules and with an immediate

propagation of these actions by displaying changes in the domains of

affected decision variables.

 Finding a feasible solution that satisfies all currently active rules

 Finding and navigating through multiple feasible solutions

 Finding optimal solutions for the defined business objectives.

What-If Analyzer comes with a collection of DMN-based decision models from

different domains including loan origination, scheduling and resource allocation, and

some interesting decision models offered as DMCommunity,org challenges
1
. A user

may select these models from the combo-box “Select Decision Model” and start their

real-time what-if analysis:

New custom decision models can be easily added to the tool. We will demonstrate

various capabilities of the What-If Analyzer using two sample decision models:

 A simple arithmetic decision model

 A loan origination decision model.

1 https://dmcommunity.wordpress.com/challenge/

https://dmcommunity.wordpress.com/challenge/

3.1 Analyzing Simple Arithmetic Decision Model

First, let’s consider a simple decision model that deals with only 4 decision variables

and various arithmetic constraints defined on them. Here is a sample of its graphical

view:

This decision model was downloaded from Excel-files which presented it in

accordance with the OpenRules [6] format. On the left you may see 4 decision

variables X, Y, Z, and Objective that were initially defined in the following Excel-

based glossary:

On the right you can see all rules (active and not) collected from decision tables

which were initially defined in Excel-based as follows:

When a user activates the rule “Z > 5” by checking the proper flag in the table

“Business Rules”, the Analyzer immediately modifies the domain of all affected

variables in the table “Decision Variables” on the left. If we deactivate this rule and

try to activate the rule “Z < 5”, the analyzer immediately will point us to the conflict:

This way the Analyzer constantly checks consistency of the entire decision model: it

is trying to find conflict among all (!) active rules. It means the Analyzer considers

conflicts not only within one decision table but across all decision tables – a

functionality that was out of reach for the majority of consistency validation tools.

When a user pushes the button “Solution”, the analyzer will find and show the first

feasible solution that satisfies all currently active rules. A user may push buttons

“Next” and “Prev” to find and navigate through the various feasible solutions:

This decision model specifies an objective using the rules (Objective = X*Y-Z). So,

the Analyzer may find an optimal solution that minimizes or maximizes this

objective:

A user may "Deactivate All Rules" and start activating various rules one-by-one and

analyzing their contribution to the removal of certain values from the domains of

decision variables. Actually a user of What-If Analyzer has an ability to emulate

various rules execution modes usually available to only rule engine developers (such

as backward-chaining when we activate constraints on the objective).

3.2 Analyzing Loan Origination Decision Model

Loan origination process is frequently used as a typical example of decision

modeling. Initially we took a loan-prequalification decision model described at the

DMCommunity website
2
. Being downloaded at the What-If Analyzer, it looks as

follows:

 (click on the image to enlarge it
3
)

2https://dmcommunity.wordpress.com/decision-models/financial-services/loan-pre-

qualification/
3 http://openrules.com/Site/images/WhatIfLoan.jpg

https://dmcommunity.wordpress.com/decision-models/financial-services/loan-pre-qualification/
http://openrules.com/Site/images/WhatIfLoan.jpg

In this example a borrower provides the requested loan amount, loan term and her

personal info financial information as an input, and the decision model produces one

of two possible decision outputs:

- the borrower is qualified for the loan

- the borrower is not qualified for the loan with an explanation.

While this model will be successfully executed by the Analyzer, it does not provide

the flexibility to keep the borrower interested even when an initial loan request is

rejected. It would be much more beneficial if the decision model can also recommend

how to modify the loan request (e.g. decrease loan amount or increase loan term) to

still make the borrower qualified.

Below we will consider a modified decision model that allows a loan officer to

consider different borrowing options using the What-If Analyzer. To do that, we will

consider Loan Amount and Loan Term as unknown decision variables which should

belong to the output of our decision model.

Then Total Income and Total Debt also become unknown, e.g. Total Income =

Monthly Income * Loan Term. For simplicity we will consider that Income Validation

Results is SUFFICIENT if the Total Income exceeds Accumulated Debt, that is the

sum of the total loan amount and the total debt over the selected loan term.

The actual income validation rules are defined in the following Excel-based decision

table:

We also added several rules that will allow us to define different constraints on loan

amount and loan term. The complete representation of the decision model can be

found in these Excel files: Decision.xls
4
, Rules.xls

5
, Glossary.xls

6
, and Data.xls

7
.

Now let’s consider how the What-If Analyzer can represent our decision model using

its graphical interface. Being downloaded into the What-If Analyzer, our decision

model will look as follows:

4 http://openrules.com/xls/LoanCalculation/Decision.xls
5 http://openrules.com/xls/LoanCalculation/Rules.xls
6 http://openrules.com/xls/LoanCalculation/Glossary.xls
7 http://openrules.com/xls/LoanCalculation/Data.xls

http://openrules.com/xls/LoanCalculation/Decision.xls
http://openrules.com/xls/LoanCalculation/Rules.xls
http://openrules.com/xls/LoanCalculation/Glossary.xls
http://openrules.com/xls/LoanCalculation/Data.xls

As you can see, on the loan request here is converted into two active rules:

- Loan Amount = 50000

- Loan Term = 24 (months)

Please note that we added a rule (the last one) that enforces Income Validation Result

to be SUFFICENT. The What-If Analyzer immediately produces a conflict as the last

rule contradicts to income validation rules.

To avoid this conflict while still keeping Income Validation Result = SUFFICIENT,

we may deactivate the rule “Loan Amount = 50000” leaving Loan Amount being

between 35000 and 75000. Here is the resulting view:

Now the conflict is resolved, and the decision variable “Loan Amount” is bounded to

35000..35999 as defined by a pure propagation of the rule deactivation event. It is

interesting to see that the maximal loan amount is now 35999 that can be explained by

the automatically propagated rule “Loan Term = 24”.

To increase the maximally allowed Loan Amount we may try to increase Loan Term.

Let’s deactivate the rule “Loan Term = 24” but activate the rule “Loan Term <= 36”.

When we click on the button “Solution”, the Analyzer will quickly find the first

feasible solution, and then we may click to the buttons “Next” and “Prev” to navigate

through multiple solutions.

For example, after 28 clicks on the button “Next” the Analyzers will show a solution

28 out of 500. Actually the Analyzer may find much more feasible solutions if we

change the limit “500” using the Analyzer’s button “Settings”. Here is the

solution#28:

When the total number of solutions is relatively small it may be useful for a user to

manually navigate through different solutions. However, it would be too tedious or

even impossible to do that. Instead, we may simply click on the button “Maximize”

and the Analyzer (after a 30-40 seconds delay) will find the maximal Loan Amount.

Of course, the search of an optimal solution for some models may become a large NP-

hard problem that may take from a few minutes or be interrupted by configurable time

limits (available through the button “Settings”).

Here is a list of all decision variables with values which correspond to the optimal

decision that maximizes Loan Amount:

So, the maximal Loan Amount is $53,999 while selected the Loan Term is 36.

Similarly, we may continue to deactivate and activate other limits to find various

optimal combinations of Loan Amount and Loan Term while satisfying other active

loan origination rules.

4 Implementation

Execution Engines. What-If Analyzer has been built on top of OpenRules Engine

known as “Rule Solver” [7]. Rule Solver is capable to download OpenRules decision

model directly from Excel files and automatically generate the corresponding

constraint satisfaction and optimization problem. Rule Solver is based on the

standard Java Constraint Programming API defined by the Java Specification Request

(JSR) 331 [8]. The use of the JSR 331 allows a user not to commit to a particular CP

vendor and to try different compliant solvers before choosing the most suitable one

based on its technical and business applicability. With this approach, we may switch

between different underlying CP solvers compliant with the JSR 331 without any

changes in the code.

Performance. For the majority of the already tried decision models, What-If

Analyzer demonstrates a high performance supporting real-time what-if analysis of

decision models. The results of rules activation/deactivation are propagated within

seconds. The search of feasible solutions is usually also does not create any

performance problems: as was shown in [1] the performance of the underlying

constraint solvers is usually better when being compared with traditional rule engines.

In the majority cases, decision models executed with traditional rule engines do not

even consider multiple or optimal decisions. What-If Analyzer opens the door to

business analysts to redefine their decision models in the way that they can navigate

through multiple decisions and even find optimal decisions. However, when it comes

to search of optimal decisions, a user should be warned about potential performance

issues. It is quite possible to redefine decision models by relaxing some rules that may

lead to situations when a number of possible combinations for all decision variables

grows exponentially (as we demonstrated on the loan calculation example with a 30-

40 seconds delay while maximizing the loan amount). In such cases, the underlying

constraint optimization problem becomes NP-complete and possible cannot be

resolved within reasonable time interval. To address these problems What-If Analyzer

sets the default limits for:

- the total number of considered solutions

- execution time for a search of one solution

- execution time for the overall search.

These limits can be adjusted and saved for every particular decision model using the

button “Settings”. It allows a decision model designer to find up a reasonable

compromise between the allocated time and quality of the proposed decision. Looking

for an optimal decision, What-If Analyzer relies on the default search strategy

provided by OpenRules Rule Solver [7]. However, for industrial level decision

models a search of optimal decisions may require a modeler to redefine the search

strategies by adding more sophisticated search heuristics.

Graphical Interface. The graphical interface for the Analyzer has been built using

OpenRules Dialog [9] that provides a simple rules-based environment for building

web applications. We recognize that one universal graphical interface cannot satisfy

all decision models that in real-world may require a lot of application-specific

features. So, the choice of OpenRules Dialog allows a user to essentially customize

the graphical interface of What-If Analyzer without major changes in the underlying

logic.

Implementation Restrictions. The current implementation of What-If Analyzer

supports decision models created in accordance the methodological approach

described in [1] and extended to the new DMN standard. However, currently it does

not support multi-hit decision tables and aggregation functions allowed by the DMN

standard [2]. It also supports only basic constructs of the DMN FEEL language and

provides its own facilities for various constrained expressions implemented within

Rule Solver.

In spite of these implementation restrictions, What-If Analyzer covers a wide class of

practical decision models in different business domains, and empowers users with

features that were out of reach for the majority of business rules and decision

management systems.

5 Related Work and Future Development

What-If Analyzer for Decision Modeling provides unique features which so far were

out of reach for the majority of business rules and decision management systems.

However, a similar functionality was available for constraint-based environments

oriented to more technical users. In particular, in [11] we described practical design

patterns for constraint programming including the “Consistent Constrained Core”

pattern that is very similar to how What-If Analyzer execution engine has been

implemented. And in [12] we demonstrated how this pattern was applied to

scheduling and resource allocation problems. Of course, these systems dealt directly

with constraint satisfaction problems and did not include the proper transformation of

business oriented decision models.

In the future, we plan to remove the implementation restrictions described above. It

will require finding a new constraint-based approach to implementation of multi-hit

decision tables with various aggregation functions. It will probably lead us far beyond

of conditional constraints described in [1]. For example, even simple rule overrides

already require a new approach as we cannot simply assign a new value to already

instantiated decision variables within a constraint satisfaction environment as it will

lead to a failure. Even more complicated issues to consider are the situations when a

decision table is accumulating different values inside one decision variable using

compound assignment operators such as “+=”. In such situations, we would probably

need to accumulate all conditional assignments in an intermediate array before

applying them to the resulting decision variable. We would also need to consider a

converter from DMN FEEL expressions to constrained expressions using JSR-331.

All these consideration considerations will be a subject for additional R&D.

The latest version DMN 1.1 specifies an interchange format in XML. It will allow

decision models produced by one DMN supporting tool to be exported to a DMN

XML file, and then to be imported by another DMN supporting tool. In particular, it

will allow What-If Analyzer to work with DMN-based decision models produced by

other tools.

References

 1. J.Feldman: Representing and Solving Rule-Based Decision Models with Constraint Solvers,

in Proc. of RuleML 2011 - America, LNCS 7018, pp. 208-221, 2011, Springer-Verlag

Berlin Heidelberg 2011,http://www.springerlink.com/content/e66077u456548231

 2. Decision Model and Notation™ (DMN™), Object Management Group (OMG),

http://www.omg.org/spec/DMN/Current

 3. B. von Halle, L.Goldberg: The Decision Model: A Business Logic Framework Linking

Business and Technology. Auerbach Publications/Taylor & Francis Group, LLC (2009)

 4. S.Russell, P.Norvig: Artificial intelligence: a modern approach, Third Edition,

http://aima.cs.berkeley.edu/2nd-ed/newchap05.pdf

http://www.springerlink.com/content/e66077u456548231/
http://www.omg.org/spec/DMN/Current
http://aima.cs.berkeley.edu/2nd-ed/newchap05.pdf

 5. DMN Supporting Tools, Decision Management Community, http://DMCommunity.org,

http://openjvm.jvmhost.net/DMNtools

 6. OpenRules, Open Source Business Rules and Decision Management System,

http://openrules.com

 7. OpenRules Rule Solver, http://openrules.com/rulesolver.htm

 8. Java Request Specification (JSR) 331: Constraint Programming API. Java Community

Process, http://www.jcp.org/en/jsr/detail?id=331

 9. OpenRules Dialog – a Questionnaire Builder, http://openrules.com/ord.htm

10. What-If Analyzer for Decision Modeling, http://openrules.com/WhatIfAnalyzer.htm

11. J. Feldman, D. Vergamini: Practical Patterns for Constraint Programming, PACP-98, 1998,

London, http://openrules.com/presentations/pact98.pdf

12. J. Feldman: Interactive Constraint Propagation, INFORMS, November-1999, Philadelphia,

http://openrules.com/presentations/INFORMS99.ppt

http://dmcommunity.org/
http://openjvm.jvmhost.net/DMNtools/
http://openrules.com/
http://openrules.com/rulesolver.htm
http://www.jcp.org/en/jsr/detail?id=331
http://openrules.com/ord.htm
http://openrules.com/WhatIfAnalyzer.htm
http://openrules.com/presentations/pact98.pdf
http://openrules.com/presentations/INFORMS99.ppt
http://openrules.com/presentations/INFORMS99.ppt

