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Abstract. The paper presents a new goodness-of-fit test on the basis of the
interval estimate of the probability distribution function. The comparative anal-
ysis is carried out for the proposed test and for the Kolmogorov test. The results
of the numerical modeling show that the proposed test has greater performance
than the Kolmogorov test in specific cases. The analysis of correlation proper-
ties of the normalized empirical cumulative distribution function is carried out.
As a result, we obtain the equation for calculating the significance level of the
proposed goodness-of-fit test.

Keywords: goodness-of-fit, statistical hypothesis, interval estimate, correla-
tion function

1 Introduction

Statistical analysis of experimental data often reduces to testing the hypothesis of
the agreement of the empirical probability distribution function with the predicted
theoretical one [1–4]. Solutions for this problem usually involve goodness-of-fit (GoF)
tests such as Kolmogorov, Cramer-von Mises or χ2-test. This approach has the following
negative features that complicate its implementation 1). There is no a valid algorithm
for choosing the type I error probability (significance level or the probability of rejecting
the true hypothesis) 2). The probability of the type II error is not considered (the
probability of accepting the false hypothesis) 3). Selection of the statistic of a GoF test
is determined by the solely technical condition. That is computability of the conditional
probability distribution law of this statistic in cases when the evaluated hypothesis is
valid. Therefore, the GoF test constructed does not represent the optimal solution for
the examined problem 4). Conventional GoF tests represent the difference between
the empirical and the theoretical distribution function as just a single number. This
sometimes appears to be a too rough estimate of the agreement of two real-valued
functions.

The features mentioned can decrease the quality of the decision procedure. For
that reason the problem of development of new GoF tests of higher quality remains
important and this topic is debated in literature [1–5].
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Papers [6, 7] present a new GoF test on the basis of the interval estimate of the
cumulative distribution function (CDF). The proposed method uses a more accurate
measure of the difference of the empirical and theoretical distribution functions com-
pared to a single number.

In the current paper we examined the performance of the interval estimate test
with a computational experiment. The results show that the proposed method is more
efficient than the Kolmogorov test in case when the true distribution has greater vari-
ance then the estimated one. In the opposite case both methods show nearly equal
efficiency. Correlation properties of the normalized empirical CDF were examined. It is
shown that this function can be considered with a good accuracy as a Markov process.
On this basis we construct an algorithm for computing the significance level of the
proposed GoF test. Analytical solutions are in good agreement with the results of the
numerical modeling.

2 The Interval Estimate Goodness-of-Fit Test

Let F (x) = P (ξ ≤ x), −∞ < x < ∞ be the true CDF of the examined random
variable ξ, where P (ξ ≤ x) is the probability of ξ ≤ x. We represent the measurements
of ξ by a sample x1, . . . , xn of the size n. The empirical CDF of a sample (the point
estimate of the function F ) is defined as F̂ (x) = ν(xi ≤ x)/n, where ν(xi ≤ x) is
the number of elements xi such as xi ≤ x. The random variable ν(xi ≤ x) has the
binomial probability distribution: P (ν = k) = Ck

np
kqn−k, k = 0, 1, . . . , n, where Ck

n is
the number of k-combinations from a set of size n, p = P (ξ ≤ x) = F (x) and q = 1−p.
Let M, D be the operators of mathematical expectation and dispersion, respectively.
Thus, Mν = np, Dν = npq, MF̂ (x) = F (x) and DF̂ (x) = F (x)[1 − F (x)]/n. If the
probability p is constant and 0 < p < 1 then, according to the local Moivre-Laplace
theorem, the binomial distribution converges to the normal distribution as n → ∞.
Therefore, we may assume that for n ≫ 1 the value

η(x) =

[
F̂ (x)− F (x)

]√
n√

F (x) [1− F (x)]
(1)

is normally distributed with zero expected value and unit variance.

In the paper [6] the Moivre-Laplace asymptotic is used to construct an interval
estimate of the function F (x) as a confidence interval [z1, z2] with a given confidence
factor 1−α (we also use the α symbol to denote the significance level of the Kolmogorov
test). The boundaries [z1, z2] of the confidence interval are defined by the condition:
P (|η| ≤ ε) = 1−α, where ε is the solution to the equation Φ(ε) = 1−α/2 and Φ(ε) is the
probability density function (PDF) of the normally distributed random variable with
zero mathematical expectation and unit variance. The boundaries [z1, z2] are obtained
as the solutions for the equation η2 = ε2 for F (x) and represented as follows:

z2,1 =
2F̂n+ ε2

2(n+ ε2)
±

√
4nε2(1− F̂ )F̂ + ε4

2(n+ ε2)
. (2)
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Testing a statistical hypothesis H0 that a function F0(x) is the true CDF of a
random variable ξ reduces to checking the condition F0(x) ∈ [z1(x), z2(x)]. If the
condition is true for each x ∈ [xmin, xmax] then the hypothesisH0 is accepted, otherwise
it is refused. xmin and xmax here represent the lowest and the highest values in the
sample. The suggested procedure was implemented as an algorithm with 3 inputs: a
dataset (x1, . . . , xn), a significance level α and an estimated CDF F0(x). The functions
F̂ and F0(x) are evaluated in N points with the step of ∆x over the argument x not
grater than (xmax − xmin)/5n.

3 The Computational Experiment

Modeling the hypothesis H0 testing procedure involves the following steps. First, a
sample (x1 . . . xn) of the random variable ξ distributed as F (x) is generated. Then the

empirical CDF F̂ (x) is calculated and the hypothesisH0 is tested using the Kolmogorov
test and the interval estimate test. This procedure was repeated for m independent
samples of the variable ξ and two values were obtained: the frequency of the event
“H0 is accepted” according to the Kolmogorov test – ν1(H0) and according to the
interval estimate test – ν2(H0). The frequency ν here means the ratio of the number
of occurrences of H0 to the number of samples m.

The computational experiment was conducted for the following series of values of
the confidence factor α: 0.0002, 0.0006, 0.001, 0.002, 0.006, 0.02, 0.06, 0.2, 0.4 and
for six hypotheses HL, H0, H1, H2, H3, H4, one of which is valid. The hypotheses
H0, . . . ,H4 correspond to the following values of the argument β: 1, 1.5, 2, 2.5, 3 of a
family of distributions [2] with the PDF:

f(x) = c · exp

[
−
(
|x|
γ

)β
]
, (3)

where the arguments γ and c are determined by the condition of the equivalence of the
variance to 1 and by the normalization condition.

Two instances of true hypothesis were examined: HL – ξ is distributed by the
Laplace law with zero expectation, variance equals to 1.65 and HG – ξ has the normal
distribution (corresponds to β = 2 for the distribution (2)). The variance of the Laplace
distribution is obtained as the minimum of the value

∫∞
−∞ |fL(x)− fG(x)| dx, where fL

is the PDF of the Laplace distribution and fG is the PDF of the normally distributed
random variable. The size n of each sample and the number of samples m were set to
100. The results of the computing of ν1(Hi) and ν2(Hi) are represented in the table
1-A for the correct hypothesis HL and in the table 1-B for the correct hypothesis HG.

A GoF test performance can be evaluated by the following variable: ∆ =
=

∑4
i=0 |ν(H)− ν(Hi)| /5, where H is the correct hypothesis. As we can see from

the table 1-A, the maximum value of ∆ for the interval estimate test is equals to
0.728 with the significance level α = 0.0006. For the Kolmogorov test the maximum is
∆ = 0.226 with α = 0.4. Therefore, in this case interval estimate test provides more re-
liable results compared to the Kolmogorov test. In the table 1-B we need to exclude the
frequency ν(H2) for calculating ∆ correctly, because the hypothesis H2 is equivalent to
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Table 1. The frequencies ν1 and ν2 for the correct hypothesis HL (Laplace distribution) – A
and HG (Gaussian distribution) – B

A

α HL H0 H1 H2 H3 H4

Kolmogorov test

0.0002 1 1 1 1 1 1
0.0006 1 0.99 1 1 1 1
0.001 1 0.99 1 0.99 0.99 1
0.002 1 1 0.99 1 1 0.97
0.006 0.99 0.96 0.98 0.99 1 0.98
0.02 0.97 0.94 1 0.97 0.98 0.98
0.06 0.95 0.91 0.94 0.94 0.93 0.9
0.2 0.84 0.56 0.76 0.7 0.67 0.59
0.4 0.63 0.33 0.53 0.55 0.33 0.28

Interval estimate test

0.0002 0.75 0.29 0.04 0.03 0 0
0.0006 0.78 0.15 0.07 0.04 0 0
0.001 0.75 0.18 0.05 0.03 0.01 0
0.002 0.77 0.19 0.09 0.02 0 0.01
0.006 0.66 0.14 0.02 0.01 0 0.01
0.02 0.49 0.05 0.02 0 0 0
0.06 0.2 0.01 0.01 0 0 0
0.2 0 0 0 0 0 0
0.4 0 0 0 0 0 0

B

α HG H0 H1 H2 H3 H4

Kolmogorov test

0.0002 1 1 1 1 1 1
0.0006 1 1 1 1 1 1
0.001 1 0.99 1 1 1 1
0.002 0.99 0.99 0.99 1 1 1
0.006 0.99 0.96 1 1 0.99 1
0.02 0.99 0.78 0.98 0.96 0.99 0.97
0.06 0.96 0.71 0.93 0.97 0.93 0.94
0.2 0.8 0.41 0.85 0.84 0.82 0.78
0.4 0.64 0.13 0.54 0.71 0.57 0.5

Interval estimate test

0.0002 0.81 0.74 0.96 0.86 0.59 0.38
0.0006 0.83 0.77 0.91 0.79 0.67 0.54
0.001 0.86 0.7 0.95 0.8 0.57 0.41
0.002 0.72 0.55 0.83 0.76 0.46 0.31
0.006 0.68 0.38 0.72 0.56 0.41 0.31
0.02 0.48 0.27 0.54 0.37 0.26 0.16
0.06 0.12 0.03 0.24 0.26 0.12 0.07
0.2 0.02 0 0 0.02 0 0
0.4 0 0 0 0 0 0

the true hypothesis HG. Here for the Kolmogorov test the maximum ∆ = 0.205 with
α = 0.4 and the interval estimate test shows the maximum ∆ = 0.247 with α = 0.001.
Thus, we may assume that if the true hypothesis is HG, both algorithms are nearly
equal in performance. It should also be mentioned that the proposed method has better
performance only on small sampling sizes, because with the increase of a sampling size
the error of any conventional GoF test asymptotically converges to zero.

4 Covariance of the Empirical Distribution Function

A random function of a real argument is called a random process in literature. Accord-
ing to this F̂ (x), η(x) are random processes. To calculate the significance level α0 of
the GoF test constructed on the basis of the interval estimate, we define the covariance
of the empirical CDF:

K(x, x+ u) = M
[
F̂ (x)− F (x)

] [
F̂ (x+ u)− F (x+ u)

]
=

= MF̂ (x)F̂ (x+ u)− F (x)F (x+ u). (4)

If u ≥ 0, then we can assume

r(x, x+ u) = MF̂ (x)F̂ (x+ u) = MF̂ (x)
{
F̂ (x) +

[
F̂ (x+ u)− F̂ (x)

]}
. (5)
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We consider that F̂ (x) and F̂ (x + u) − F̂ (x) are independent random variables. This
statement holds true if the value of the argument x is sufficiently small, such as F (x) ≤
0.25. Here F̂ (x) is defined with a relatively small number ν(xi ≤ x) of sample elements
such that xi ∈ (−∞, x]. Significant uncertainty remains in regard to the number of
sample elements ν(x < xi ≤ x+u) which define the value F̂ (x+u)− F̂ (x) and have to
fit into the interval (x, x+u]. With the increase of x, e.g. if F (x) > 0.5, this uncertainty
decreases and random values F̂ (x) and F̂ (x+u)−F̂ (x) become significantly correlated.

Let us show that for small arguments x and x + u, u > 0, the random variables
under study can be assumed independent. Let the event A = {ν(xi ≤ x) = n1},
B = {ν(x < xi ≤ x + u) = n2} and C = {ν(xi > x + u) = n3}. The sample size is
n = n1 + n2 + n3. We denote the probabilities p1 = P (ξ ≤ x), p2 = P (x < ξ ≤ x+ u)
and p3 = P (ξ > x + u). The probability P (B) of the event B is described by the
binomial distribution:

P (B) = Cn2
n pn2

2 (1− p2)
n−n2 , n2 = 0, 1, . . . , n. (6)

Similarly the conditional probability P (B/A) of the event B given that A has occurred:

P (B/A) = Cn2
n−n1

pn2
2 (1− p2)

n−n1−n2 , n2 = 0, 1, . . . , n− n1, (7)

From the equations (6), (7) we obtain:

V =
P (B)

P (B/A)
=

n!(n− n1 − n2)!

(n− n2)!(n− n1)!
(1− p2)

n1 (8)

Small values of x and x + u correspond to the conditions n1 << n, n2 << n,
n1 +n2 << n and the factorial asymptotic can be approximated with a good accuracy
by n! ≈

√
2πnnne−n. Thus, we can substitute the factorials in (8) with the approximate

expressions and calculate lnV . In the expression obtained we expand the function
ln(1 + y) in a series about the parameter y to order y2. Here we consider that the
ratios n1/n, n2/n, (n1 + n2)/n and the value p2 are small parameters. After rather
simple transformations we obtain

lnV ≈ n1

(n2

n
− p2

)
. (9)

The value n2/n converges in probability to p2 as n → ∞. Therefore, if n is finite and
n1, n2 are small, the value lnV ≈ 0 compared to n. Hence, P (B) ≈ P (B/A) and the
events A and B can be considered independent.

Assuming the variables independence in (5) we obtain

r(x, x+ u) = MF̂ 2(x) + F (x) [F (x+ u)− F ] , u ≥ 0. (10)

Considering that MF̂ (x) = DF̂ + F 2(x), thus

r(x, x+ u) = DF̂ (x) + F (x)F (x+ u), u ≥ 0. (11)

Similarly for u < 0 we find

r(x, x+ u) = DF̂ (x+ u) + F (x+ u)F (x), u < 0. (12)
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We use equations (11, 12) to substitute terms in (4):

K(x, x+ u) =

{
DF̂ (x), u ≥ 0,

DF̂ (x+ u), u < 0.
(13)

Hence, covariance function of the process η(x) is equal to

ρ(x, x+ u) = Mη(x)η(x+ u) =



√
F (x) [1− F (x)]

F (x+ u) [1− F (x+ u)]
, u ≥ 0,

√
F (x+ u) [1− F (x+ u)]

F (x) [1− F (x)]
, u < 0.

(14)

Function ρ simplifies if we substitute x for y = x+ u/2. Therefore, for any u

ρ
(
y − u

2
, y +

u

2

)
=

√√√√√F
(
y − |u|

2

) [
1− F

(
y − |u|

2

)]
F
(
y + |u|

2

) [
1− F

(
y + |u|

2

)] . (15)

Let u be a small parameter and there is a PDF f(y) = ∂F (y)/∂y. We expand the
function F in a series:

F

(
y +

|u|
2
)

)
= F (y) + f(y)

|u|
2

+ . . . (16)

and substitute the function in (15) for (16):

ρ
(
y − u

2
, y +

u

2

)
=

√
1− a|u|
1 + a|u|

· 1 + b|u|
1− b|u|

≈ (1− a|u|)(1 + b|u|) ≈ e−(a−b)|u|, (17)

where a = f(y)/2F (y), b = f(y)/2[1− F (y)].
Function (17) represents the covariance function of a random process only when

a− b > 0 i.e. for such values of y that F (y) < 0.5. This statement is in good agreement
with the assumption of independence of the random variables ν(xi ≤ x) and ν(x <
xi ≤ x + u) for relatively small x and u. It should be mentioned that we may obtain
the result similar to the formulas (15, 17) for relatively large arguments y such as
F (y) > 0.75.

To test the obtained relations function ρ is calculated using the equation (15) for the
normal distribution (F = FG) and for the Laplace distribution (F = FL). The results
obtained can be approximated with a good accuracy by the exponential equation (17)
for any values of the parameter y in the set {y : F (y) < 0.4} and |u| < y.

Equations (15, 17) define the covariance function of the process η(x) for relatively a
small values of the parameter y. We simulate the estimates of the correlation function
of the process η(x) to obtain the complete representation of its correlation properties.
Therefore, we examine two hypotheses: η(x) is a second-order stationary process and
η(x) is a non-stationary process. For each sample x1, . . . , xn we calculate the trajectory
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of the process η(x) for x ∈ [−5, 5] according to the equation (1). Then we define the
sequence η1, . . . , ηN by the sampling of the argument x with the step ∆x to calculate
the covariance estimate

B(k) =
1

N

N−k∑
i=1

ηiηi+k, k = 0, 1, . . . , N/2. (18)

To improve the accuracy we find the average covariance estimationB0(k) form samples.
Minimization with respect to the parameter λ:

N/2∑
k=0

[
B0(k)− e−λk

]2 → min
λ

(19)

defines an optimal value of λ for the approximation of the estimate B0(k) by the
function e−λk. These results allow us to assume that the covariance function of the
random process η(x) has a form of an exponent. For example if n = 50 and m = 103,
then the average deviation

∣∣B0(k)− e−λk
∣∣ equals to 0.007. In this case the optimal

value of the parameter λ ≈ 0.8∆x.
Assuming that the process η(x) is non-stationary we define its covariance estimate

as:

B(i, k) =
1

m

m∑
l=1

η
(l)
i η

(l)
i+k, i = 1, . . . , N − k, (20)

where η
(l)
1 , . . . , η

(l)
N is the array of values of the process η(x) and l is the index of the

corresponding sample. If η(x) is a stationary process, then for the given k the function
B(i, k) is a constant value within the error limits for all i = 1, . . . , N − k. To check
this property we evaluate function B(i, k) for given value k∆x. This value equals to
0, 0.01, 0.1, 0.2 and 0.5 times the length of the interval [−5, 5], which is the domain
of η(x). The process η(x) has a zero mathematical expectation and a unit variance.
Therefore, as it is expected, B(i, k) remains a constant for small values of k∆x (i.e. 0
and 0.01) and for the value of 0.5, which is relatively large. For k∆x = 0.1 we observe
the maximum deviation of B(i, k) from a constant approximately by 0.1 near the middle
value i = (N − k)/2. Hence, as a first approximation, the random process η(x) can be
considered a second-order stationary process with an exponential correlation function.

5 Significance Level of the Goodness-of-Fit Test

If a random process η(x) with a zero mathematical expectation and a unit variance is
Markov, normal and stationary, its correlation function has the following form ρ(u) =
e−λ|u|. This result is known in literature as the Doob‘s theorem. It is not difficult to
derive, by analyzing the proof of that theorem, that if a random process η(x) is normal,
stationary and have a correlation function of the form ρ(u) = e−λ|u|, then this process
is Markov. Thus, the significance level evaluation problem for the proposed GoF test
reduces to calculating the probability of hitting the boundaries of the interval [−ε, ε]
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of the normal stationary Markov process η(x). Let p0 be the probability of accepting
the true hypothesis. Thus,

p0 = P

[
N∩
i=1

(|ηi| ≤ ε)

]
=

ε∫
−ε

. . .

ε∫
−ε

fN (y1, . . . , yN )dy1, . . . , dyN , (21)

where
∩

is the set intersection operation, fN is the joint PDF of the normal random
variables η1, . . . , ηN .

Numerical evaluation of the equation (21) is not possible due to the high integral
multiplicity. If we consider all random variables η1, . . . , ηN mutually independent, then
it follows from (21) that p0 = (1−α)N . The numerical simulation results show that an
error of approximately 10% occurs for values near the optimal α ≈ 0.001.

Considering the statistical correlation between the elements of the Markov chain
η1, . . . , ηN allows us to reduce the calculation error. For this purpose we examine the
joint PDF of variables ηi and ηi+1:

f2(v1, v2) =
1

2π
√
1− ρ2

exp

[
−v21 + v22 − 2ρv1v2

2(1− ρ2)

]
, (22)

and calculate the probability

Q = P (|ηi| ≤ ε
∩

|ηi+1| ≤ ε) =

ε∫
−ε

ε∫
−ε

f2(v1, v2)dv1dv2. (23)

Random events |ηi| ≤ ε
∩

|ηi+1| ≤ ε for i = 1, 4, 7, . . . are statistically independent as
η(x) is a Markov process. Therefore, approximately p0 = QN/3. Using this formula for
calculation reduces the error to the order of 4-5%. Thus, the significance level of the
GoF test based on the interval estimate is defined by the equation α0 = 1−QN/3.

Conclusion

The results obtained show that GoF test on the basis of the interval estimate is signif-
icantly more efficient then Kolmogorov test if the true distribution function has grater
variance than the hypothetical one. Otherwise the advantage of the proposed test is
insignificant. It is shown that normalized empirical CDF is similar to a Markov process
on the statistical properties. We yield an equation for approximate calculation of the
significance level of the proposed GoF test.
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