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Abstract. We study the problem of constructing a cost-effective regular cover
of a strip with identical sectors. Three effective coverage models are considered
and their comparative analysis is performed which allows to obtain an upper
bound for the minimum number of the sectors per unit length of the strip.
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Introduction

Sensor networks are designed to monitor the areas and/or the objects. Each sensor
in the network collects data within a certain area, which is called a coverage domain
of the sensor. In the case of monitoring the plane region each point of the region
should be covered, i.e. it (point) should belong to the coverage domain of at least one
sensor. Sensing energy consumption is proportional to the coverage area, and multiple
coverage involves unnecessary loss of the energy. Therefore, the problem of constructing
an energy efficient sensor network is reduced to the problem of finding the least dense
cover [1–3]. The most studied are the covers of the plane [4–7]. In particular, in [4] the
least dense cover with identical disks is proposed, its density is 2π/

√
27 ≈ 1.2091. In [5]

a cover with disks of two types is proposed, its density tends to 1.0189 with unlimited
growth of the number of disks, which radii tends to zero.

The number of the papers devoted to the covering of the bounded regions is sub-
stantially less. The first attempts to construct a strip covers were made in [8, 9] (the
strip can be considered as a semi-bounded domain).

Evidently that the density of a cover is at least 1, and the deviation from 1 charac-
terizes the effectiveness of the cover. More types of figures used in the cover, the lower
density of the coverage can be. Of course, it is legitimate to compare the covers, which
use the same set of figures. For simplicity of analysis the researchers, as a rule, consider
the regular covers, in which the whole area is split into the equal polygons (tiles), and
all the tiles are covered equally [2–5, 8, 10]. To evaluate the quality of the regular cover
it is sufficient to consider the coverage of one tile. In [3] we introduced a classification
of the regular covers, that has allowed to compare the covers in the same class.
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The need to monitor the strip occurs when observing the objects such as roads,
pipelines, perimeters of the objects, etc. In the case when camera is located at a certain
height above the surface, on the surface it covers an ellipse. The coverage problems
with ellipses are considered, for example, in [10, 11]. If the camcorder lens is positioned
horizontally, then the coverage area in this case is a sector. The angle and radius of
the sector are determined by the characteristics of the device, and can take different
feasible values. The sectors are used in the covers in the several papers [12–22]. In [21],
we considered the problem of minimizing the number of identical sectors per unit of
the covered area in the case when the vertices of the sectors which cover one tile are
located at the same point. In [22], we considered the problem of constructing the least
dense cover of a strip with identical sectors.

In this paper, as well as in [22], we consider the problem of constructing an optimal
cover of the strip with equal sectors, but according to the criterion the minimum number
of sectors per unit length of the strip. Since the sectors are equal, such objective function
can be considered as a cost function.

The paper is organized as follows. In the next section a formulation of the problem
is provided. The covering models are proposed in the section 3, and for each model
the objective function is provided. Section 4 presents a comparative analysis of the
proposed coverings, allowing to select a concrete cover depending on the parameters of
the sector. Section 5 concludes the paper.

1 Problem Formulation

To denote the sector, we use the couple (R,α), where R > 0 is the radius and α ∈
(0, π/2] is the angle of the sector. Let strip be given and, without loss of generality, let
its width be equal to 1. Assume that there is an unlimited collection of the identical
sectors (R,α) each of which can be arbitrary placed and oriented.

Definition 1. A collection C of the placed and oriented sectors is called a cover of
the strip S if every point of S belongs to at least one sector in C.

Definition 2. A cover C of the strip S is called regular if S is split into the equal
rectangles (tiles), and all tiles are covered identically.

The height of a tile is 1, but its length depends on the cover. Let us denote the minimal
length of a tile in the cover C as L(C), and the number of sectors covering one tile
denote as Q(C).

Problem P. It is required to construct a regular cover C = C(R,α) of the strip with
equal sectors (R,α) in which the ratio σ(C) = Q(C)/L(C) is minimal.

2 The Coverage Models

As an approximate solutions of the problem P, we consider the same three models of
covers as in [22]. But instead of the density function we consider the objective function
σ(C(R,α)).
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2.1 Model M1

Suppose that 0.5 < R sinα ≤ 1. Let us define the pair of sectors inside the strip such
that two of their sides (one side of each sector) lie on the opposite boundaries of the
strip, while the other two are tangent to each other. The pair of sectors cover the
rectangle (tile) GBCF in Fig. 1 that is a part of the strip. Cover M1 is constructed
with these pairs of sectors as shown in Fig. 1, so the number of sectors covering one
tile is Q(M1) = 2. In this regular cover the tile is the rectangle GBCF whose height
coincides with the strip width and equals to 1. At that, the strip is subdivided into
identical tiles, and all tiles are covered in the same fashion by the pairs of sectors.RA B C D1 E

G F
K a 1
Fig. 1. Model M1 [22].

Lemma 1. The objective function for the cover M1 is

σ(M1(R,α)) =
2 sinα

sinα
√

R2 − (1−R sinα)2 − (1−R sinα) cosα
, (1)

and it takes the minimum value equals 2 sinα when R sinα = 1.

Proof. In [22], we proved the expression

L(M1) = a1 =
√

R2 − (1 −R sinα)2 − 1−R sinα

tanα
.

Then the objective function is

σ(M1(R,α)) =
Q(M1)

L(M1)
=

2 sinα

sinα
√

R2 − (1−R sinα)2 − (1−R sinα) cosα
.

Denote x = 1− R sinα ≥ 0. Then R = (1 − x)/ sinα and

σ(M1(x, α)) =
2 sinα

√

(1− x)2 − x2 sin2 α− x sin2 α cosα
.

Since the functions sinα, sin2 α and sin2 α cosα are all positive, the function σ(M1(x, α))
is increasing by x. Then (1) takes its minimum when R sinα = 1. By substituting this
value in the formula (1), we get a minimum equals 2 sinα. The proof is over.
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Remark 1. If the sector (R,α) is given, then we cannot choose arbitrary R and α,
but the value 2 sinα is the lower bound for the functional (1), which decreases with
decreasing α.

If the sensor is a camcorders, then the greater the angle the smaller the radius and
vice versa, but the area of the sector can be fixed, for example,

R2α/2 = S = const. (2)

If so, then we cannot set always R sinα = 1 (x = 0). In this case we can take the
minimal possible positive x = 1−R sinα = 1−

√

2S/α sinα. Then it is necessary to find

maximum for
√

2S/α sinα which is at most 1. The function f(α) = sinα/
√
α is concave

and positive having maximum equals f̄ ≈ 0.8512 when α = ᾱ ≈ π/2.6953 ≈ 66.78◦.
Therefore, if

√
2Sf̄ ≤ 1, then we set α = ᾱ, else set α = α̂, where α̂ is such that

√

2S/α̂ sin α̂ = 1.
Substituting the equality (2) into the formula (1), we obtain

σ(M1(S, α)) =
2 sinα

sinα

√

2S
α −

(

1−
√

2S
α sinα

)2

−
(

1−
√

2S
α sinα

)

cosα

.

For any feasible value of S the function σ(M1(S, α)) is increasing. Then the minimal
feasible angle α gives minimum to the σ(M1(S, α)). For example, if S = 2, then

min
{α: α

8 sin2 α
<S≤ α

2 sin2 α
}
σ(M2(S, α)) ≈ 0.2523

when α ≈ π/49.9458 ≈ 3.6◦.

2.2 Model M2

Suppose now that R sinα ≥ 1, and let us consider the cover in Fig. 2 and denote it
as M2. The cover model M2 has much in common with model M1. One side of each
sector of the pair of sectors lies on the strip boundary, and the sectors of the same pair
do not intersect, but in M2 a portion of each sector goes beyond the strip.

Lemma 2. The objective function for the cover M2 is

σ(M2(R,α)) =
2 sinα

(
√
R2 − 1 +R) sinα− cosα

, (3)

and it takes its minimum when R and α are the greatest possible.

Proof. In [22], we proved the expression

L(M2) = a2 = R+
√

R2 − 1− 1

tanα
.
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B
Fig. 2. Model M2 [22].

Then the objective function for M2 is

σ(M2(R,α)) =
Q(M2)

L(M2)
=

2 sinα

(
√
R2 − 1 +R) sinα− cosα

.

Function σ(M2(R,α)) decreases with increasing α and R. Then (3) takes its minimum
when α = π/2 and R is the greatest possible. The proof is over.

Remark 2. If the sector (R,α) is given, then we cannot take always both R and α the
greatest possible.

If equality (2) holds, then R =
√

2S/α, and

σ(M2(S, α)) =
2 sinα

sinα
(

√

2S/α− 1 +
√

2S/α
)

− cosα
,

assuming that 2S/α ≥ 1 and sinα
(

√

2S/α− 1 +
√

2S/α
)

− cosα > 0. For each

feasible value of S the function σ(M2(S, α)) has one minimum. For example, if S = 2,
then

min
{α:S≥ α

2 sin2 α
}
σ(M2(S, α)) ≈ 0.5055

when α ≈ π/12.2958 ≈ 14.64◦.

2.3 Model M3

Let none of the sector side lie on the boundary of the strip, and let R cos(α/2) ≥ 1.
We denote the cover in Fig. 3 as M3. Each of the sectors leans upon the boundary of
the strip by at least one end of the arc, and the sector axis is at some angle to the strip
boundary, whereas the tangent sectors in the pair is directed oppositely.

Let us introduce the parameter β, the angle between the sector axis and the line
orthogonal to the strip boundaries (Fig. 3). Then 0 ≤ β ≤ π/2− α/2− arcsin(1/R).
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R D E1 A
C

a 3B
Fig. 3. Model M3 [22].

Lemma 3. The objective function for the cover M3 is

σ(M3(R,α)) =
2

sinα
min

{

cos2(α/2)

2R cos(α/2)− 1
;

sin2(α+ arcsin 1
R )

2R sin(α+ arcsin 1
R )− 1

}

, (4)

and its value is at least
1

R
√
2− 1

.

Proof. In [22], we proved that

|AB| = R sinα

cos(β − α/2)

and

|DC| = |AB|
(

1− 1

R cos(β − α/2)

)

=
R sinα

cos(β − α/2)

(

1− 1

R cos(β − α/2)

)

.

Then the length of the tile is

L(M3) = a3 = |AB|+ |DC| = sinα(2R cos(β − α/2)− 1)

cos2(β − α/2)

and

σ(M3(R,α, β)) =
2

a3
=

2 cos2(β − α/2)

sinα(2R cos(β − α/2)− 1)
.

Function σ(M3(R,α, β)) is concave with respect to β for each values of α and R, then
it reaches minimum at the boundary of the feasible region, i.e.

σ(M3(R,α)) = min {f1(R,α); f2(R,α)} ,
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where

f1(R,α) =
2 cos2(α/2)

sinα(2R cos(α/2)− 1)

and

f2(R,α) =
2 sin2(α+ arcsin 1

R )

sinα(2R sin(α+ arcsin 1
R )− 1)

.

The functions f1(R,α) and f2(R,α) are decreasing, first f1(R,α) ≥ f2(R,α), then
vice-versa. Then

min
α≤π/2

σ(M3(R,α)) = f1(R, π/2) =
1

R
√
2− 1

.

This completes the proof of Lemma 3.
If (2) holds, then

σ(M3(S, α, β)) =
2 cos2(β − α/2)

sinα
(

2
√

2S/α cos(β − α/2)− 1
) ,

0 ≤ β ≤ π/2− α/2− arcsin

√

α

2S
, α ≤ 2S.

Function (4) is concave with respect to β, then it takes minimum value on the boundary
of the feasible region, i.e.

min
0≤β≤π/2−α/2−arcsin

√
α

2S

σ(M3(S, α, β)) =

min

{

σ(M3(S, α, 0)), σ

(

M3

(

S, α, π/2− α/2− arcsin

√

α

2S

))}

=

2

sinα
min

{

cos2(α/2)
√

8S/α cos(α/2)− 1
;

sin2
(

α+ arcsin
√

α
2S

)

√

8S/α sin
(

α+ arcsin
√

α
2S

)

− 1

}

.

Let us fix any feasible S. When α is small, the decreasing function

f3(S, α) =
2 cos2(α/2)

sinα(
√

8S/α cos(α/2)− 1)

is greater than the increasing function

f4(S, α) =
2 sin2(α+ arcsin

√

α
2S )

sinα(
√

8S/α sin(α+ arcsin
√

α
2S )− 1)

.

Then in order to minimize the objective function one should take minimal feasible
angle, and function f4(S, α) gives the minimum.

For example, if S = 2, then

min
0≤β≤π/2−α/2−arcsin

√
α

2S

σ(M3(S, α, β)) = f4(2, α) → 0.5

when α → 0.
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3 Comparative Analysis of Models M1, M2, and M3

The objectives of this section is to find out which of the three considered cover mod-
els M1, M2, or M3 has minimum objective function σ(M1(R,α)), σ(M2(R,α)) or
σ(M3(R,α)) for arbitrary R and α.

Fig. 4. The preference regions for the covers M1 (red), M2 (blue), and M3 (green).

Definition 3. By the best cover we understand the cover among models M1, M2,
and M3 with least objective function.

Since the analytical calculation of the objective functions turned out to be a hard
problem, the subsequent results were obtained numerically using Maple 17.02 package.

At each point (α,R), α ∈ [1◦, 90◦], 0 < R ≤ Rmax we calculate the values of
the objective functions σ(M1(R,α)), σ(M2(R,α)) and σ(M3(R,α)) and select the
minimum among them. The model of the strip cover that corresponds to this value is
the best among M1, M2, and M3.

The preference areas are indicated in Fig. 4 for each coverage model. Given different
values of the regions of admissibility of the sector parameters, we obtain different zones,
but the character of the pattern will not change. The image in Fig. 4 is obtained when
R = 0.1, 0.2, . . . , Rmax = 6.0 and α = 1◦, 2◦, . . . , 90◦.



Strip Covering with Identical Directed Sensors 709

It is obvious that for any fixed value of the angle α the values of the objective
functions decrease with increasing radius R. Therefore, assuming the radius R = Rmax

we reduce maximally the value of the objective function. Fig. 5 depicts a graph of the

M o d e l M 3M o d e l M 2M o d e l M 2

( )

Fig. 5. Function Σ(α).

function

Σ(α) = min {σ(M1(Rmax, α)), σ(M2(Rmax, α)), σ(M3(Rmax, α))} ,

when Rmax = 6. Its minimum equals Σ(α) = σ(M3(Rmax, α)) ≈ 0.1678 when α = 90◦.
If, for example, Rmax = 2, then Σ(α) = σ(M2(Rmax, α)) ≈ 0.5359 when α = 90◦.

Suppose equality (2) holds. Then we cannot set R = Rmax, because R =
√

2S/α
depends on S and α. Depending on the value of S, we get different results, but the
character of graphics remains like in Fig. 6 and Fig. 7.

Fig. 7 depicts a graph of the function

ΣS(α) = min {σ(M1(S, α)), σ(M2(S, α)), σ(M3(S, α))} ,

when S = 2. Its minimum equals ΣS(α) = σ(M1(S, α)) ≈ 0.5049 when α = 14◦. If, for
example, S = 6, then ΣS(α) = σ(M2(S, α)) ≈ 0.1669 when α = 5◦.

4 Conclusion

Since the identical directed sensors (when the coverage domain is the sector) have equal
cost, in this paper we consider the problem of constructing the optimal cover of a strip
with identical sectors object to the minimum number of sensors used to cover a strip.
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Fig. 6. The preference regions for the covers M1 (red), M2 (blue), and M3 (green) when
equality (2) holds.S ( )

M o d e l M 3M o d e l M 2M o d e l M 2
Fig. 7. Function ΣS(α).



Strip Covering with Identical Directed Sensors 711

Three regular covers are studied, and their cost-effective comparative analysis is carried
out.

Technique, which we have used, is similar to what was used in [22]. But the results
we obtain are new. Using our results, one can choose the cost-effective coverage model
for any sector (R,α), 0 < R ≤ Rmax, α ∈ [1◦, 90◦].

Moreover, we have considered the case when the angle and radius of the sector are
related the natural relation (2), where S is the area of the sector. If the area S is fixed,
then by increasing the angle α of the sector radius R decreases, and vice versa. In
particular, we can find the optimal angle and the best coverage model for any S.
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