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Abstract. We consider a bilevel programming problem. The leader’s objective
function is assumed to be linear. The follower’s problem is a quantile mini-
mization problem. It is assumed that the follower’s loss function is bilinear. We
obtain a deterministic equivalent of the original problem in the case of a scalar
random variable. In the case of the normal distribution of the random vector, an
algorithm to solve the follower’s problem is suggested. We consider an economic
model example to illustrate the suggested method. Results of computation are
described.
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Introduction

Bilevel programming problems [1–3] describe hierarchical systems. There are two deci-
sion makers in these systems. The first decision maker is a so-called leader, the second
decision maker is a so-called follower. The follower chooses his strategy by solving
a follower’s optimization problem. In the follower’s problem, the leader’s strategy is
fixed. The leader takes into account the optimal follower’s strategy as the function
of his strategy. Thus the follower’s problem contains restriction on optimality of the
follower’s strategy.

Stochastic bilevel problems allow us to take into account random parameters, which
affect the system. Usually in bilevel stochastic problems, the follower chooses his strat-
egy when a realization of the random parameters becomes known [4–6]. However, from
a practical point of view, the follower often does not have information about values
of the random parameters. Unlike [4], in the present paper, we assume that the fol-
lower does not know all parameters of his problem, but their distribution is known.
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This stochastic bilevel problem is more complex, because the follower’s problem is a
stochastic programming one. We suggest using the quantile function [7] as the fol-
lower’s objective function. The quantile criterion (or Value-at-Risk criterion) is used
to model systems with high reliability requirements. The quantile function is defined
as the guaranteed with a fixed probability level of a given loss function.

In this paper, we suppose that the follower’s loss function is bilinear. A particu-
lar case of this quantile optimization problem is considered in [8], where a method to
reduce this problem to a one-dimensional optimization problem is suggested. To com-
pute the value of the objective function in this one-dimensional problem, a quadratic
optimization problem has to be solved. A similar idea is used in the present paper to
solve the follower’s problem.

We assume that the leader’s problem is linear. For this problem, we suggest a
deterministic equivalent in the one-dimensional case. In the case of normal distribution,
we suggest an algorithm to solve the follower’s problem. To show the usefulness of the
model, we consider a simple applied economic example.

1 Statement of the problem

Let u ∈ R
n be a leader’s strategy, y ∈ R

m be a follower’s strategy. Let a random vector
X with realizations x ∈ X ⊂ R

m be given. We suppose that the follower’s loss function
is bilinear and given by the relation

Φ(y, x) , x⊤y. (1)

Let us define the quantile function

Φα(y) , min{ϕ | P{Φ(y,X) ≤ ϕ} ≥ α}, (2)

whereP is the probability measure generated by the distribution function of the random
vectorX . The value Φα(y) of the quantile function is the minimum level of the follower’s
loss function Φ(y, x), which cannot be exceeded with probability α ∈ (0, 1).

Let the follower’s problem be given as

Φα(y) → min
y∈Y (u)

, (3)

where α ∈ (0, 1),
Y (u) , {y ∈ R

k | A2u+B2y ≥ b2} (4)

is the set of feasible follower’s strategies, A2 ∈ R
l2×k, B2 ∈ R

l2×m are matrices, b2 ∈ R
l2

is a vector.
Let us denote by

Y ∗(u) , Argmin
y

{Φα(y) | y ∈ Y (u)} (5)

the set of optimal follower’s strategies.
The bilevel stochastic programming problem (the leader’s problem) is stated as

cT1 u+ fTy → min
u∈U(y),y∈Y ∗(u)

, (6)
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where

U(y) = {u ∈ R
n | A1u+B1y ≥ b1}, (7)

c1 ∈ R
n, f ∈ R

k, and b1 ∈ R
l1 are vectors, A1 ∈ R

l1×n, B1 ∈ R
l1×k are matrices.

2 Scalar case

In this section, we research the scalar case of the original problem. We consider this
case separately, because in this case a deterministic equivalent to the original problem
can be obtained.

Let X be a scalar random variable, i.e., x ∈ R. Then the follower’s strategy y is
also scalar. We suppose that y ≥ 0. In this case, the follower’s problem is stated as

Y ∗(u) , Argmin
y∈R

{Φα(y) | A2u+B2y ≥ b2, y ≥ 0}, (8)

where B2 = (B21, B22, . . . , B2l2)
⊤.

Let us denote by xα the α-quantile of the distribution of the random variable X ,
i.e.,

xα , min{x ∈ R | P{X ≤ x} ≥ α}. (9)

In this section, we suppose that the leader’s strategies belong to the set

U , {u ∈ R
n | A1u ≥ b1}, (10)

i.e., B1 is the zero matrix.

Proposition 1. Let the following conditions hold:

(i) The follower’s problem is given by (8);
(ii) xα > 0;
(iii) B2i > 0, i = 1, l2;
(iv) B1 is the zero matrix;
(v) f > 0.

Then the set of optimal strategies of problem (6) coincides with the set of optimal
strategies u of the problem

c⊤1 u+ fψ → min
ψ∈R,u∈U

(11)

subject to

b2i −A2iu

B2i
≤ ψ, i = 1, n, (12)

ψ ≥ 0, (13)

where A2i is the i-th row of the matrix A2, b2i is the i-th element of the vector b2. Also,
the optimal values of objective funtions (6) and (11) are equal.
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Proof. Notice that Φα(y) = xαy because y ≥ 0. Since condition (iii) holds, from (8) it
follows that

y ≥
b2i −A2iu

B2i
, i = 1, l2. (14)

Hence we have

Y ∗(u) =

{

max
i=1,l2

{

b2i −A2iu

B2i
, 0

}}

. (15)

The set Y ∗(u) is a singleton. Substituting (15) into (6), we obtain the problem

c⊤1 u+ f

{

max
i=1,l2

{

b2i −A2iu

B2i
, 0

}}

→ min
u∈U

. (16)

Introducing the auxiliary variable ψ, we can reduce problem (16) to linear programming
problem (11) subject to (12) and (13).

We thus proved that the original problem can be reduced to a linear programming
problem under assumptions of Proposition 1. As we can see from the proof, conditions
of Proposition 1 provide the existence of an optimal strategy of the original problem.

3 Gaussian Case

In this section, we return to general statement (6), but we assume that the random
vector X is normal distributed with expectation µ and covariance matrix Σ, i.e., X ∼
N (µ,Σ). Also, we assume that α ∈ (0.5, 1).

Let us consider follower’s problem (3). If X ∼ N (µ,Σ), then

Φα(y) = µ⊤y + zα
√

y⊤Σy, (17)

where zα is the α-quantile of the standard normal distribution. Hence the follower’s
problem can be written as

µ⊤y + zα
√

y⊤Σy → min
y∈Y (u)

. (18)

Since the function y 7→
√

y⊤Σy is a seminorm, problem (18) is convex. This problem
can be solved using methods of convex programming (see, e.g., [9]). However, we would
like to notice that problem (18) can be reduced to a quadratic programming problem
if µ⊤y is fixed. Let us add the constraint µ⊤y = θ to problem (18). Then an optimal
strategy of the follower’s problem can be found as a solution to the problem

θ + zα
√

y⊤Σy → min
y∈Y (u)

(19)

subject to
µ⊤y = θ. (20)

It is easily seen that problem (19) is equivalent to the quadratic programming problem

y⊤Σy → min
y∈Y (u), µ⊤y=θ

. (21)
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Let us denote by y(θ) an optimal solution to problem (21). Since the leader’s strategy
u is fixed, we omit dependence y(θ) on u. Consider the function

g(θ) = θ + zα

√

y(θ)⊤Σy(θ). (22)

Notice that the value g(θ) is equal to the optimal objective value of problem (18) under
additional constraint µ⊤y = θ. So we can find an optimal value θ denoted by θ∗ solving
the problem

g(θ) → min
θ∈R

. (23)

Since problem (18) is convex and the constraint µ⊤y = θ is linear, the function g(θ) is
unimodal. If it is known that θ∗ ∈ [θmin, θmax], where θmin and θmax are lower and upper
bounds for θ∗, then problem (23) can be solved using, e.g., the golden section search
[10]. Thus, the following algorithm to solve the follower’s problem can be suggested.

Algorithm

1. Find optimal θ∗ ∈ [θmin, θmax];
2. Find optimal y∗ by solving problem (21) for θ = θ∗.

Using the follower’s optimal strategy, we can solve the leader’s problem. The leader’s
problem is nonconvex in general. Its optimal solution can be found using methods of
nonconvex optimization. Also, the bilevel problem can be reduced to a nonconvex
optimization problem with equilibrium constraints (see, e.g., [2]) using the Karush-
Kuhn-Tucker conditions. If the leader’s strategy is scalar, the leader’s problem can be
solved using methods of one-dimensional optimization.

4 Example

Let us solve the following simple applied problem. Let the leader be an investor, the
follower be a manufacturer. The leader’s strategy u ∈ R is the volume of investments.
The manufacturer produces two types of products. The follower’s strategy is the vector
(y1, y2)

⊤, where yi, i = 1, 2, is the volume of output of the i-th product.
The follower’s objective function is given by

Φα(y) = min{ϕ | P{−(X1y1 +X2y2) ≤ ϕ} ≥ α}. (24)

where Xi, i = 1, 2, is a random profit from one unit of the i-th product. The follower’s
problem is stated as

Φα(y) → min
y

(25)

subject to

B2y ≤ b2, (26)

b⊤3 y ≤ u, (27)

where B2 is a technological matrix, b2 is a vector of resources, b3 is a vector of manufac-
turing costs. Notice that the value of the follower’s objective function is the minimum
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level of the follower’s loss (i.e., −X⊤y = −(X1y1 +X2y2)), which cannot be exceeded
with probability α.

The leader’s problem is stated as

u− f⊤y → min
u≥0,y∈Y ∗(u)

, (28)

where fi is an investor’s profit from one unit of the i-th product. The leader intends
to minimize difference between the volume u of investments and the profit f⊤y.

We solve the problem for the following input data:

B2 =
(

1 2
)

, b2 = 2, b3 = (2, 1.6)⊤; f = (1.8, 2.4)⊤; α = 0.975. (29)

We assume that

X ∼

((

2
3

)

,

(

0.7 0
0 1

))

. (30)

Using the suggested algorithm, we can solve the follower’s problem for a fixed value of
the leader’s strategy. By setting different values of the follower’s strategy, we obtain the
plot of the leader’s objective value against the leader’s strategy. This plot is depicted
in Fig. 1. As we can see, small and large values of investments give large value of the
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Fig. 1. The plot of the leader’s objective value against the leader’s strategy

objective function. In the case of small investments, the leader does not have profit. In
the case of large investments, the profit is much less than the volume of the investments.

Solving the leader’s problem, we obtain the following results. The optimal leader’s
strategy is u∗ = 2.024; the optimal leader’s objective value is equal to −0.5872; the
optimal follower’s strategy is y∗ = (0.3540, 0.8225)⊤.

5 Conclusion

In this paper, the bilevel programming problem with quantile follower’s objective func-
tion is considered. We should notice that this problem is difficult to solve because it is
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nonconvex in general. However, we could find the optimal solution to the problem for
the considered example, where the leader’s strategy is scalar.
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