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Abstract. A class of distribution free multiple decision statistical procedures is
proposed for threshold graph identification in a complete weighted graph asso-
ciated with a set of random variables (random variables network). The decision
procedures are based on simultaneous application of sign statistics. It is proved
that single step, step down Holm and step up Hochberg statistical procedures
for threshold graph identification are distribution free in sign similarity network
in the class of elliptically contoured distributions.

1 Introduction

Network model of complete weighted graph associated with a set of random variables is
useful in biological and financial applications. Biological applications are mostly related
with probabilistic graphical models [5], weighted correlation networks [3] and others.
Financial applications are related with market network analysis [7], [2]. In this paper we
consider a model which we call random variables networks. Random variables network
is a pair (X, γ), where X = (X1, X2, . . . , XN ) is a random vector and γ is a measure
of association of random variables. For Gaussian graphical model vector X has a mul-
tivariate Gaussian distribution and γ is the partial correlation. For market network
model Xi is an attribute of stock i (return, volume, price and at.) and γ is the Pearson
correlation (in most cases). Main goal of network analysis is to identify a network struc-
tures containing a key information about network. Popular network structures studied
in the literature are concentration graph in Gaussian graphical models, and, minimum
spanning tree, planar maximally filtered graph, threshold (market) graph, cliques and
independent sets in market network analysis.

Random variable network is as complete weighted graph where the nodes are asso-
ciated with random variables and weight of edge are given by a measure of association
between them. Threshold graph is a subgraph of random variable network. An edge is
included in threshold graph iff its weight is larger than a given threshold. According to
the choice of measure of association one get different correlation networks and threshold
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graphs. Threshold graph identification problem is to identify the threshold graph from
observations. In this paper we study threshold graph identification problem in sign
similarity network and compare it with identification problem in Pearson correlation
network.

On our study of threshold graph identification problem we use a multiple decision
statistical approach. The decision procedures considered in this paper are based on
simultaneous application of sign tests. Three popular multiple statistical procedures
are investigated: single step multiple decision procedure, step down Holm multiple
testing procedure and step up Hochberg multiple testing procedure. The quality of
the procedures is measured by risk function, and in particular FWER (Family Wise
Error Rate). Our main result is: considered multiple decision procedures for threshold
graph identification are robust (distribution free) in sign similarity network in the class
of elliptically contoured distributions. Moreover it is shown that these procedures can
be adapted for robust threshold graph identification in Pearson correlation network.
This result gives a theoretical foundations for practical threshold graph identification
algorithms in the case where the distribution of the vector X is unknown.

2 Basic definitions and notations

Let X = (X1, X2, . . . , XN ) be a random vector. Consider a complete weighted graph
associated withX. Nodes of the graph are random variablesXi, i = 1, . . . , N and weight
of edge (i, j) is given by some measure of association γ(Xi, Xj) between them. One
popular measure of association is Pearson correlation γP

i,j . Pearson correlation generates
a Pearson correlation network. In this paper we study a sign similarity network, where
the measure of association is given by the probability of sign coincidence γS

i,j = P ((Xi−
E(Xi))(Xj −E(Xj)) > 0). This measure of association has a simple interpretation and
was shown to be appropriate in market network analysis [1].

In this paper we assume that distribution of the random vector X belong to the
class of elliptically contoured distributions (ECD) with density functions:

f(x;µ,Λ) = |Λ|− 1
2 g{(x− µ)′Λ−1(x− µ)} (1)

where Λ is positive definite matrix, g(y) ≥ 0. Multivariate Gaussian and Student
distributions are a particular cases of ECD.

Threshold graph is constructed as follows: the edge between two vertices i and j
is included in the threshold graph, iff γi,j > γ0 (where γ0 is a threshold). For a given
threshold γ0 the threshold graph is defined by its adjacency matrix S = (si,j), where
si,j = 0 if γi,j ≤ γ0 and si,j = 1 if γi,j > γ0, si,i = 0, i, j = 1, 2, . . . , N .

Let x(t) be a sample of the size n from distribution of the random vector X:

x(t) = (x1(t), x2(t), . . . , xN (t)), t = 1, 2, . . . , n

Consider the set G of all N × N symmetric matrices G = (gi,j) with gi,j ∈ {0, 1},
i, j = 1, 2, . . . , N , gi,i = 0, i = 1, 2, . . . , N . Matrices G ∈ G represent adjacency matrices
of all simple undirected graphs with N vertices. Total number of matrices in G equals
to L = 2M with M = N(N − 1)/2.
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3 Multiple decision framework

Threshold graph identification problem is to identify the threshold graph from observa-
tions. The problem can be formulated as a multiple decision problem of selecting one
from a set of L hypotheses:

HG : γi,j ≤ γ0, if gi,j = 0, γi,j > γ0, if gi,j = 1; i ̸= j (2)

Multiple decision statistical procedure δ for threshold graph identification is a map from
the sample space RN×n to the decision space D = {dG, g ∈ G}, where the decision dG
is the acceptance of hypothesis HG, G ∈ G.

Let S = (si,j), Q = (qi,j), S,Q ∈ G. Denote by w(S,Q) the loss from the decision
dQ when the hypothesis HS is true

w(HS ; dQ) = w(S,Q), S,Q ∈ G

It is assumed that w(S, S) = 0, S ∈ G. According to general decision theory [8] the
quality of statistical procedure δ is measured by the risk function. Let fX(x) be the
density function for the random vector X. Risk function is then defined by

R(fX ; δ) =
∑
Q∈G

w(S,Q)PX(δ(x) = dQ/HS),

where w(fX ; δ(x)) = w(S,Q) if fX ∈ HS , δ(x) = dQ.
In multiple hypotheses testing [6], there are different way to measure errors: per-

comparison error rate (PCER), per-family error rate (PFER), family wise error rate
(FWER), generalized family wise error rate (GFWER), false discovery rate (FDR).
These errors can be considered as risk for appropriate choice of losses. For example if
the loss w(S,Q) takes two values zero and one: w(S,Q) = 1 if there is at least one
incorrect inclusion of edge in the threshold graph. Risk function in this case is equal
to the probability of at least one type I error (FWER, Family Wise Error Rate): In
multiple decision theory [4], the losses are supposed to be additive. It means that the
loss from misclassification of HS is equal to the sum of losses from misclassification of
individual hypotheses.

Consider the set of individual hypotheses:

hi,j : γi,j ≤ γ0 vs ki,j : γi,j > γ0 (i, j = 1, . . . , N ; i ̸= j).

we shall assume that tests for the individual hypotheses are available. For Pearson
correlation network we use a well known correlation test. For sign similarity network
we construct a uniformly most powerful tests for individual hypotheses testing. Using
these tests one can construct a different multiple testing statistical procedures largely
used in the literature: single step procedure δS (all tests are applied simultaneously),
Holm step down procedure δH (at each step either one individual hypothesis hi,j is
rejected or all remaining hypotheses are accepted) or Hochberg step up procedure
δSg (at each step either one individual hypothesis hi,j is accepted or all remaining
hypotheses are rejected).
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4 Robustness of statistical procedures for threshold graph
identification in sign similarity network

We prove that single step, step down Holm, and step up Hochberg multiple testing
procedures for threshold graph identification in sign similarity network are distribution
free for any loss function.
Theorem. Let random vector (X1, . . . , XN ) has elliptically contoured distribution with
density f(x; 0, Λ). Then for single step, Holm, Hochberg identification statistical pro-
cedures the probabilities P (δ(x) = dQ/HS), Q,S ∈ G are defined by the matrix Λ and
does not depend on the function g.
Corollary. Let random vector (X1, . . . , XN ) has elliptically contoured distribution
with density f(x; 0, Λ). Then the risk functions R(fX ; δS), R(fX ; δH), R(fX ; δHg) are
defined by the matrix Λ and does not depend on the function g for any loss function
w(S,Q).

In particular for the loss function w(S,Q) such that w(S,Q) = 1 if there is at least
one incorrect inclusion of edge in the threshold graph, and w(S,Q) = 0 otherwise the
risk is equal to FWER (Family Wise Error Rate). Therefore the FWER of single step,
Holm, and Hochberg statistical procedures are defined by the matrix Λ and does not
depend on the function g. The same is true for other type of errors, PCER, PFER,
GFWER, FDR and for risk function with additive losses. Using this result it is possible
to construct single step, Holm and Hochberg distribution free statistical procedures for
threshold graph identification in Pearson correlation network too.
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