
Genetic Local Search
for the Servers Load Balancing Problem

Yuri Kochetov1,2, Artem Panin1,2, Alexander Plyasunov1,2

1 Novosibirsk State University,
2 Pirogov St., 630090 Novosibirsk, Russia

2 Sobolev Institute of Mathematics,
4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia

jkochet@math.nsc.ru,aapanin1988@gmail.com

Abstract. In this work we consider the servers load balancing problem (SLBP)
formulated as a mixed integer linear programming problem. As known, this
problem is NP-hard in strong sense. We analyze the approximability of the
problem and prove that SLBP is Log-APX-hard under PTAS-reducibility and
cannot be NPO-complete unless P=NP. To solve the problem we develop an ap-
proximate method using the idea of genetic local search. Computational results
are discussed.

Keywords: servers load balancing, mixed integer linear programming, approx-
imability, genetic local search.

1 Introduction

We consider the following servers load balancing problem [1, 2]. Given a set of servers
and set of disks (more precisely, disk images). Internet sites with heterogeneous data
are stored on those disks. Users visit the sites and thus cause the load on the servers.
This load varies in time and is characterized by several parameters (e.g., load of the
processor, required memory, etc). The users activity for each disk over the planning
period is known. This activity allows to determine the load of the servers at each
moment within each of the parameters. The time is assumed to be discrete, i.e. the load
is changing, for example, each minute or second. If the load by each of the parameters
does not exceed the given threshold then the server is running in its normal working
mode. Otherwise the server has an overload. In order to avoid overload, some disks
can be moved from one server to another. This transfer requires certain computational
costs. We call them additional costs. We assume that for each disk the additional
costs for moving it from one server to another are known for each parameter. The
initial distribution of the disks by servers is given. The goal is to reallocate disks to
the servers in order to achieve the minimum total overload during the whole planning
period subject to the additional cost constraints for each server.

Copyright c⃝ by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Kononov et al. (eds.): DOOR 2016, Vladivostok, Russia, published at http://ceur-ws.org

454 Yu. Kochetov, A. Panin, A. Plyasunov

It was proven in [1] that servers load balancing problem is NP-hard in strong sense.
An approximation algorithm with a posteriori performance guarantee for solving this
problem based on the problem representation as mixed integer linear programming
problem was also proposed in this paper. Integer variables were substituted with con-
tinuous ones and the optimal solution of the corresponding linear programming problem
was used to obtain an approximate solution and its error estimations. More precisely,
a linear programming allows to fix a part of disks on servers and thus to reduce the di-
mension of the problem and to solve the obtained subproblem exactly with the branch-
and-bound method (using CPLEX solver). This approach allows us to find quickly
an optimal solution on the instances with zero overload and gives rather good results
in case of big overload of servers. For small overload a linear programming approach
gives almost no positive integer components; thus, the dimension of the problem is not
reduced, and hence the algorithm does not work.

Another approach based on the local search principles was proposed in [2]. Together
with the essential neighborhoods of small size (switch disk to another server or swap
disk with another disk) authors considered a new original neighborhood of exponential
size. One disk was chosen on each server. After that, selected disks were redistributed
between the servers. Each server got one disk, while the total overload of servers was
minimized. The solution of the assignment problem gives the best redistribution of
disks. Authors studied different ways of choosing disks for redistribution and efficiency
of the local search with such neighborhood.

In the second chapter we formulate the servers load balancing problem as a mixed
integer linear programming problem. We prove some results on approximation guaran-
tee in the third chapter. We propose a new approximate method which is based on the
idea of genetic local search in the fourth chapter . Computational results are discussed
in the fifth chapter.

2 Mathematical model

We use the following notation: S is the set of servers, D is the set of disks; T is the
planning period; R is the set of load parameters (CPU, RAM, . . .); cdrt is the load of
the disk d at the moment t by the parameter r; csr is the threshold load of the server s
by the parameter r; x0

ds is the initial distribution of disks among servers; bwsdr(b
e
sdr) is

the additional costs to move the disk d to (from) the server s for the parameter r, and
Bw

sr(B
e
sr) is the maximum allowed additional costs for the parameter r to move disks

to (from) the server s.
Variables of the problem are: xds = 1 if the disk d is moved to the server s, xds = 0

otherwise; ystr is the overload at the server s at the moment t by the parameter r.
In these terms we can write the servers load balancing problem (SLBP) as a mixed

integer linear programming problem [1,2]:

min
∑
s∈S

∑
t∈T

∑
r∈R

ystr

subject to

ystr ≥
∑
d∈D

cdrtxds − csr, s ∈ S, t ∈ T, r ∈ R,

Genetic Algorithm for the Servers Load Balancing Problem 455∑
s∈S

xds = 1, d ∈ D,

∑
d∈D

bwsdrxds

(
1− x0

ds

)
≤ Bw

sr, s ∈ S, r ∈ R,

∑
d∈D

besdrx
0
ds(1− xds) ≤ Be

sr, s ∈ S, r ∈ R,

ystr ≥ 0, xds ∈ {0, 1}, d ∈ D, s ∈ S, t ∈ T, r ∈ R.

The objective function defines the total overload of servers during the planning
period. The first set of inequalities defines the overload for each server at each moment
of time for each parameter. The second set of equalities ensures that each disk will be
put exactly at one server. The third and fourth sets of inequalities bound the additional
cost for each server and each parameter when ejecting and inserting disks.

Formulating SLBP as an integer linear programming gives us a possibility to solve
it using commercial software such as IBM ILOG CPLEX, GUROBI, AMPL, etc. Un-
fortunately, because of huge integrality gap, transition to continuous variable xds does
not give us a possibility to find an exact solution even for instances of average size. For
example, for

|S| = 20, |D| = 200, |T | = 150, |R| = 2,

calculations can take more than one day without any guarantee to find an exact so-
lution. It can be partly explained by the fact that the problem is NP-hard in strong
sense even for |T | = |R| = 1 and for zero additional costs [1, 2].

3 Approximation complexity

In this chapter we describe the place of SLBP in approximation hierarchy [3]. The first
level of approximation hierarchy has the following structure:

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ Log −APX ⊆

⊆ Poly −APX ⊆ Exp−APX ⊆ NPO.

Each class consists of optimization problems from the class NPO and describes certain
quality of approximation, i.e. the first level is used to describe properties of the prob-
lems for which the corresponding decision version belongs to the class NP. The class PO
consists of the problems for which there exists an exact polynomial algorithm. The class
FPTAS consists of the problems for which there exists fully polynomial approximate
scheme and the class PTAS is formed by the problems for which there exists polyno-
mial approximate scheme. Classes APX, Log-APX, Poly-APX and Exp-APX consist of
the problems for which there exists polynomial r-approximate algorithm, where r is a
constant, logarithmic, polynomial, and exponential estimates for the accuracy of error,
respectively. In the last three cases values of the above-mentioned functions depend on
the length of input data (instance of the problem) [3,4]. As known, inclusions of these
classes are proper unless P=NP [3–5].

456 Yu. Kochetov, A. Panin, A. Plyasunov

Fig. 1. The constructed instance of SLBP.

we introduce notation for an arbitrary optimization problem A with minimization
criterion: L(A) is the set of inputs (refer to an arbitrary input t ∈ L(A) as a problem
t); OPTA(t) is the optimal value of t ∈ L(A). DA(t) is the set of feasible solutions of
t ∈ L(A); FA(t, s) is the value of the objective function of t ∈ L(A) on the solution
s ∈ DA(t). The error of the solution s ∈ DA(t) of t ∈ L(A) is defined as

RA(t, s) = max{ FA(t, s)

OPTA(t)
,
OPTA(t)

FA(t, s)
} ≤ 1.

Clearly, if A is the optimization problem with minimization criterion then

RA(t, s) =
FA(t, s)

OPTA(t)
.

Here, we deal with rational numbers only. We remind the definition of PTAS-
reducibility [6]. Let A and B be problems from the class NPO. We say that the problem
A PTAS-reduces to the problem B if and only if there exist three functions φ, ρ and γ
such that

– φ(t, ε) ∈ L(B) for any t ∈ L(A), and any ε from the interval (0, 1); φ is polynomially
computable with respect to the length |t| of the input t;

– ρ(t, s, ε) ∈ DA(t) for any t ∈ L(A), any ε ∈ (0, 1), and any s ∈ DB(φ(t, ε)); ρ is
polynomially computable with respect to |t| and the length |s| of the solution s;

– γ : (0, 1) → (0, 1); if RB(φ(t, ε), s) ≤ 1/ε then RA(t, ρ(t, s, ε)) ≤ 1/γ(ε); t ∈ L(A),
ε ∈ (0, 1), s ∈ DB(φ(t, ε))).

The following statement holds:

Theorem 1. The problem SLBP is Log-APX-hard under PTAS-reducibility.

Proof. We consider the minimum set cover problem [7] that can be described as follows.
Given a set M and its subsets M1, ...,Mn such that

∪n
i=1 Mi = M , a set Ñ ⊆ N =

Genetic Algorithm for the Servers Load Balancing Problem 457

{1, ..., n} is the cover of M if and only if
∪

i∈Ñ Mi = M . The weight of each set Mi

equals 1. The weight of the cover N is the sum of weights of all Mi, i ∈ N . The objective
is to find the cover with minimal weight. As known, the minimum set cover problem is
Log-APX-complete under PTAS-reducibility [8].

We reduce the minimum set cover problem (MSCP) to SLBP. To define the function
φ we consider the following input of SLBP. Let S = S1∪S2∪S3, where |S1| = |S2| = |N |
(for ease of description, let S1 = N) and |S3| = |M |, D = D1 ∪D2, where |D1| = |N |
and |D2| = |M | (for ease of description, let D2 = M). The planning period T consists
of a single moment, i.e. |T | = 1. The set R consists of |M | load parameters. Each disk
from D1 locates in a server from S1 (one disk in each server). By analogy, each disk
from D2 are in a server from S3. The load of each disk d ∈ D1 by each load parameter
r equals 1. We associate each disk d ∈ D2 with a certain load parameter r. Then,
the load of disk d ∈ D2 by the association load parameter r equals 1. For leftover load
parameters the load is 0. The threshold load of any server s ∈ S1 by any load parameter
equals 1. The threshold load of any server from S2 by the first load parameter equals
1− δ for some small positive δ. For another load parameters the threshold load equals
1. The threshold load of the servers S3 by each load parameter is 0. Let the additional
costs to move a disk from a server be 0. We associate each disk d ∈ D1 with two certain
servers from S1 and S2, for example, the first disk is associated with the first server
from S1 and the first server from S2, the second disk is associated with the second
server from S1 and the second server from S2, i.e. the additional costs to move a disk
d ∈ D1 to the associated server s ∈ S2 equal 0 and to another server equal 1. The
additional costs to move the disk d ∈ Ms to the server s ∈ S1 are equal to 0 and to
another server are equal to 1. All maximum allowed additional costs are equal to 0.
Scheme of the reduction is shown in figure 1.

To solve the constructed input we need to move disks from D2 to servers from S1.
Then, we have to move disks from D1 that are in servers whose number of disks is
more than 1. We move it to the servers from S2 (one disk to its distinct server). Thus,
the optimal objective value is equal to |N∗|δ, where N∗ is an optimal cover.

Let (x, y) be the feasible solution of the considered input. To define ρ construct a
feasible solution ρ(x, y, ε). First, using (x, y), construct the following solution (x̃, ỹ). In
x if the disk d ∈ Ms from some s ∈ N is located in a server from S3 then we move d
to the server s. We consider consequently all disks d̃ ∈ D1, which is located in a server
from S1. If there is another disk in this server then we move d̃ to the appropriate server
from S2. Derived distribution is x̃. Thus, the objective function value does not grow
up, i.e. ỹ ≤ y. Moreover, all disks in S2 associate with some cover Ñ . Finally, we have:

RMSC(t, ρ(x, y, ε)) =
|Ñ |
|N∗|

=
|Ñ |δ
|N∗|δ

=
ỹ

|N∗|δ
≤

≤ y

|N∗|δ
= RSLB(φ(t, ε), x, y) ≤

1

ε
.

Thus, we could take the function γ as the identity function. ⊓⊔

In previous theorem we obtained a lower bound on the location of SLBP in the
approximation hierarchy. In addition, we derive an upper bound. Let us consider the

458 Yu. Kochetov, A. Panin, A. Plyasunov

LP ILP MLS
csr time value time value time value
850 2 0 8 0 1 0
840 2 0 21 0 1 0
830 2 0 11 0 1 0
820 2 0 3000 4 2 0
810 2 0 2100 0 2 0
800 2 0 3000 1370 3 0
750 200 0 — — 1200 8424
700 734 87700 — — 1200 120862
650 182 382399 3000 469294 1200 382560
600 62 682399 3000 761107 1 682399

Table 1. Computational result for the case Bw
sr = Be

sr = 150.

maximum weighted satisfiability problem (MWSP) described in [3]. In this problem
there is the boolean formula φ in variables x1, x2, . . ., xn with nonnegative weights
w1, w2, . . ., wn. Solution is the truth assignment τ to the variables that satisfies φ.
The measure is max{1,

∑n
i=1 wiτ(xi)}, where Boolean values ”true” and ”false” are

identified with 1 and 0, respectively. As known, MWSP is NPO-complete under AP-
reducibility1 [3]. If SLBP is NPO-complete under AP-reducibility, then MWSP AP-
reduces to SLBP. Then we can obtain a feasible solution of MWSP in polynomial time
using, for example, the initial distribution of SLBP. Thus, we can solve NP-complete
satisfiability problem in polynomial time. Therefore, SLBP cannot be NPO-complete
under AP-reducibility unless P=NP.

High complexity of the problem gives rise to development of new approximation
algorithms. One of the priorities in the area is development of genetic local search
methods that are known to perform well while solving many NP-hard discrete opti-
mization problems [9, 10].

4 Genetic local search

To solve SLBP we developed a hybrid algorithm based on the genetic algorithm and
local search [9,10]. First, we determine all parameters of this hybrid algorithm (genetic
local search or GLS). Let Imax be the iteration number of the algorithm. P is the size
of population (problem’s solutions). Cmax is the maximal number of possible crosses
of parents. The population is the set of feasible solutions of SLBP. The parent is the
population’s element. Then, the genetic local search scheme can be described as follows:

– Step 0: Create the initial population consisting of P feasible solutions. Let i := 0;
– Step 1: Take an arbitrary manner two parents from the population and cross them

as follows: each disk places randomly with probability 0.5 to the first parent server

1 AP-reducibility is a special case of PTAS-reducibility.

Genetic Algorithm for the Servers Load Balancing Problem 459

LS(move) LS(LK) LS(rand) GLS(move) GLS(LK)
csr time value time value time value time value time value
850 59 0 65 0 <1 0 <1 0 <1 0
840 61 0 65 0 <1 0 <1 0 <1 0
830 61 0 64 0 1 0 1 0 1 0
820 61 0 65 0 1 0 1 0 1 0
810 74 0 76 0 2 0 2 0 2 0
800 88 0 90 0 20 0 20 0 20 0
750 237 8667 833 9199 284 8687 336 8362 1845 8427
700 285 121062 854 120121 143 120685 199 119840 1349 120073
650 174 382847 820 382807 73 382802 422 382673 774 382670
600 62 682399 522 682399 <1 682399 <1 682399 <1 682399

Table 2. Computational results for the case Bw
sr = Be

sr = 150 (extention).

or to the second parent’s server. If the resulting solution (descendant) is infeasible,
because restrictions on the ejection and insertion disks were failed, then repeat
crossing process. If the feasible solution is not found after Cmax crosses, then i :=
i+ 1 and if i < Imax, then repeat step 1, else STOP;

– Step 2: Apply the local search described below to the resulting solution from the
previous step. Put i := i + 1. If i is not more than given iteration number Imax,
then go to step 1. Otherwise STOP.

Apply the local search algorithm with randomized neighbourhood (neighbourhood
rand described below) P times to the initial distribution x0 to derive the initial pop-
ulation. Let x̃ be some feasible distribution of the problem. We use f to denote the
objective function of SLBP. We describe the local search (LS) as follows:

– Step 0: x∗ := x̃ and f∗ := f(x̃);
– Step 1: Find the best neighbour x in the neighbourhood of x∗;
– Step 2: If f(x) < f∗, then x∗ := x, f∗ := f(x), and go to step 1. Else STOP.

In the local search algorithm we consider three neighbourhood types: move, KL
(Kernighan-Lin) [9] and rand. Neighbour of a feasible solution x in a neighbourhood
move is arbitrary feasible solution which is received from x by switching a disk to
another server or swapping a disk with another disk between two servers. Let D̃ be a
set of disks. Neighbour of a feasible solution x in a neighbourhood move(D̃) is arbitrary
feasible solution which is received from x as follows. We take a disk (or two disks) which
does not belong to the set D̃ and move the disk(s) as in the neighbourhood move. We
use Lmax to denote the number transformations the solution which was moved in the
neighbourhoodmove(D̃). Neighbour of some feasible solution x in a neighbourhoodKL
is arbitrary feasible solution which is received from x as the result of implementation
of the following algorithm:

– Step 0: Given x̃ := x, x∗ := x, f̃ := f(x), and D := ∅;

460 Yu. Kochetov, A. Panin, A. Plyasunov

LP ILP MLS
csr time value time value time value
850 2 0 6 0 1 0
840 2 0 7 0 1 0
830 2 0 17 0 1 0
820 2 0 70 0 2 0
810 2 0 3000 1834 6 0
800 2 0 3000 2480 14 0
750 198 0 — — 1200 13965
700 423 96911 3000 188306 1200 129511
650 160 382399 607 407792 1200 383448
600 58 682399 85 702039 1 682399

Table 3. Computational results for the case Bw
sr = Be

sr = 50.

– Step 1: Repeat the following procedure Lmax times. Find the best neighbour x
′

of x∗ in move(D). If solution x
′
differs from x∗ only transferring some disk d to

another server, then D := D ∪ d. Else, for definiteness, let two disks d and d
′
were

swaped, than D := D ∪ d ∪ d
′
. Given x∗ := x

′
. If f(x∗) < f̃ , then x̃ := x∗ and

f̃ := f(x∗).

In move disks are viewed alternately and to any disk the best server or swapping
disk are selected. In contrary, in the neighbourhood rand we select the disk randomly
with uniform distribution. After that, we find the best server or swapping disk. LS
algorithm with the neighbourhood rand stops after IRmax steps.

If we use move (KL or rand) neighbourhood, then call the local search algo-
rithm and genetic local search as LS(move) (LS(KL) or LS(rand)) and GLS(move)
(GLS(KL) or GLS(rand)), respectively.

5 Computational results

Presented algorithms LS and GLS were implemented in C++ and tested on PC Intel
Core i7-3612QM with 4 GB RAM. We used known instances with random initial data
from [1, 2] to explore our algorithms. At these instances there is following dimension:
|S| = 20, |D| = 200, |T | = 150, |R| = 2. The values x0

ds that of the initial distribution
of disks on servers were generated randomly with uniform distribution. For each disk
one server was chosen randomly. The load value and additional costs for each disk an
average load value cd, d ∈ D, was initially assigned. It was chosen uniformly on the
interval [50, 100]. Then the following values were assigned: cdrt = cd/10 + µdrt, b

w
sdr =

cd/10 + νsdr, b
e
sdr = cd/10 + θsdr, s ∈ S, d ∈ D, r ∈ R. Here the values µdrt ∈ [−20, 20]

and νsdr, θsdr ∈ [−3, 3] were also chosen as independent uniform random values from
the specified intervals.

We divide computational experiments in two groups. In the first group (see tables
1 – 4) instances differ from each over only the choice of threshold loads and maximum

Genetic Algorithm for the Servers Load Balancing Problem 461

LS(move) LS(LK) LS(rand) GLS(move)
csr time value time value time value time value
850 57 0 52 0 1 0 1 0
840 63 0 52 0 1 0 1 0
830 62 0 53 0 3 0 3 0
820 63 0 54 0 2 0 2 0
810 76 0 62 0 3 0 3 0
800 92 0 75 0 3 0 3 0
750 169 10419 176 10485 29 11100 38 10522
700 211 124552 217 124703 24 123983 24 123983
650 156 383016 210 383073 21 383228 19 383068
600 62 682399 511 682399 <1 682399 <1 682399

Table 4. Computational results for the case Bw
sr = Be

sr = 50 (extension).

allowed additional costs. In the tables 1 and 2 maximum allowed additional costs are
equal to 150. In contrary, in the tables 3 and 4 it is equal to 50. Moreover, threshold
loads are the same for all servers. Their value is specified in the first column of tables
1 – 4 and characterizes the number of instance. According to the computational exper-
iment, instances with threshold loads equal to 700 were the most difficult for known
algorithms and new methods. Therefore, the second group (see table 5) instances con-
sist of 10 instances with maximum allowed additional costs equal to 150 and threshold
loads equal to 700, i.e. we can say that these instances are the most difficult instances
of servers load balancing problem for real dimension.

In the computational experiments we used the following empirical parameters of
algorithms. We took Imax = 200, P = 6, IRmax = 20000, Cmax = Lmax = 30. We
can increase IRmax to 100000 – 200000 and decrease Imax to 50 – 100 to reduce the
computation time with small loss.

Algorithms LS(move), LS(KL), LS(rand), GLS(move), and GLS(KL) are com-
pared with servers load balancing problem linear relaxation (LP), algorithm ILP
from [1] based on the transformation the solution of linear relaxation and local search
with neighborhood of exponential size (algorithm MLS) described in [2].

Columns value and time correspond to objective function value and computational
time of the best found solution, respectively. Experimental studies show the high effi-
ciency of the developed genetic local search methods in comparison with known algo-
rithms. Local search algorithm with randomized neighbourhood often obtains a good
solution in short time. Therefore, we used this method to obtain a good initial pop-
ulation. Algorithms LS(rand) and GLS(move) were more efficient than method ILP
and comparable with method MLS. Moreover, the relative deviation from the lin-
ear relaxation does not exceed 0,12 (12 percent). Finally, algorithm GLS(move) does
not significantly exceed in accuracy and significantly exceed in computational time
GLS(KL) (see table 2). Algorithms LS(rand), LS(move), and LS(KL) are same in
accuracy, but LS(rand) significantly exceed LS(move) and LS(KL) in computational
time (see tables 2 and 4).

462 Yu. Kochetov, A. Panin, A. Plyasunov

LP ILP MLS LS(rand) GLS(move)
inst value value value time value time value
1 234387 331819 246780 38 246599 1454 245225
2 327380 367169 329868 18 330406 1805 330231
3 486154 498036 531918 29 527598 1475 527904
4 404395 488143 417768 34 418865 1523 417525
5 346045 393182 353489 28 353449 1516 353340
6 341400 475071 384536 41 384845 1805 384134
7 407088 428234 407594 29 407722 1482 407648
8 256666 325084 281827 31 276887 1320 276634
9 322371 361414 325038 19 325544 1480 325091
10 549565 567503 561315 23 555645 23 555645

Table 5. Computational results for the case csr = 700.

6 Conclusion

In this work the servers load balancing problem is considered. For solution of this
problem new approximate approach based on the genetic local search is proposed.
Experimental studies show high efficiency of the developed approximate methods. Ap-
proximability of the problem is analyzed. It is proven that the problem is Log-APX-hard
under PTAS-reducibility and cannot be NPO-complete under AP-reducibility unless
P=NP.

For the further research it is interesting to consider neighborhood of exponential size
(see [2]) and another neighbourhoods, new crossing procedures, for example, procedure
of optimal crossing [11], path relinking algorithm [9] and another heuristic methods. As
the exact location of the problem in the approximation hierarchy did not established,
it is planned to specify the upper and lower approximation bound.

Acknowledgments. This research was supported by the Ministry of Education and
Science of the Republic of Kazakhstan (grant 0115PK00546).

References

1. Kochetov, Yu.A., Kochetova, N.A.: Problem of Load Balancing Servers. Vestnik Novosib.
Gos. Univ. Ser. Inform. Tekhnol. 11(4), 71–76 (2013)

2. Davydov, I., Kochetov, Yu., Kononova, P.: Local Search with an Exponential Neighbor-
hoodfor the Servers Load Balancing Problem. Journal of Applied and Industrial Mathe-
matics. 9(1), 27-35 (2015)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi,
M.: Complexity and approximation: combinatorial optimization problems and their aprox-
imability properties. Berlin: Springer-Verlag, (1999)

4. Bazgan, C., Escoffer, B., Paschos, V.: Completeness in standard and differential approx-
imation classes: Poly-(D)APX- and (D)PTAS-completeness. Theoret. Comput. Sci. 339,
272-292 (2005)

Genetic Algorithm for the Servers Load Balancing Problem 463

5. Crescenzi, P., Kann, V., Silvestri, R., Trevisan, L.: Structure in approximation classes.
SIAM J. COMPUT. 28(5), 1759-1782 (1999)

6. Crescenzi, P., Trevisan, L.: On approximation scheme preserving reducibility and its appli-
cation. Proc. 14th Annual Conference on Foundation of Software Technology and Teoret-
ical Computer Science. Lecture Notes in Computer Science 880, Springer-Verlag, Belrin,
330-341 (1994)

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. San Francisco, Freeman, (1979); Mir, Moscow, (1982)

8. Escoffier, B., Paschos, V.Th.: Completeness in approximation classes beyond APX. The-
oret. Comput. Sci. 359, 369-377 (2006)

9. Kochetov, Yu.A., Plyasunov, A.V.: Genetic local search the graph partitioning problem
under cardinality constraints. Computational Mathematics and Mathematical Physics.
52(1), 157-167 (2012)

10. Kochetov, Yu., Panin, A., Plyasunov, A.: Comparison of metaheuristics for the bilevel
facility location and mill pricing problem. Journal of Applied and Industrial Mathematics.
9(3), 392-401 (2015)

11. Eremeev, A.V., Kovalenko, Ju.V.: Optimal recombination in genetic algorithms for combi-
natorial optimization problems – part I. Yougoslav Journal of Operations Research. 24(1),
1-20 (2014)

