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Abstract. For the linear programming (LP) problems, perhaps infeasible, with
block-angular matrices of constraints, two parallel second order optimization
methods are proposed. Being applied to initial LP problem they give its solution
if this problem is solvable, and automatically deliver a solution of some relaxed
LP problem, otherwise. The methods use penalty and barrier functions as well as
Tikhonov regularization of Lagrangian of initial problem. The methods contain
a parameter which tends to zero and minimize a residual of constraints. Parallel
calculations of matrix operations follow MPI-type paradigm.
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Introduction

Infeasible linear programs is widely studied class of the improper problems in mathe-
matical programming theory (see [1,2,3,4,5,6] and others). They arise naturally in many
applications of linear programming (LP) such as network flows analysis problems, prob-
lems of portfolio selection and scheduling problems which reflect complex production
processes, e.g. in manufacture and power systems. Their inherent infeasibility may be
caused by multiple factors such as errors in the input data, imbalance of its resource
constraints and objectives, modelling bias as well as its structural distortions.

Basic approach addressing this issue is to introduce a more general form of solution
for unsolvable problem which is in fact an optimum for some repaired or relaxed LP
problem [1,2,7,8,9]. Following this approach in [10,11] two numerical methods were
proposed which automatically adjust rigth-hand-side vector of initial LP problem if it
is infeasible and then find its generalized solution using penalty and barrier functions as
well as Tikhonov regularization of standard Lagrangian [12,13,14]. The methods contain
a small parameter which tends to zero and minimize the residual of constraints.

In this paper we discuss how these methods may be fit to parallel calculations in
MPI-type paradigm under the assumption that constraints matrix of initial LP problem
has a block-angular structure.
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1 The Problem State and Preliminaries

Consider the linear program

min {(c, x) : Ax = b, x ≥ 0} (1)

and its dual one
max {(b, y) : A⊤y ≤ c} ; (2)

where A ∈ IRm0×n0 , c ∈ IRn0 and b ∈ IRm0 are given, x ∈ IRn0 and y ∈ IRm0 are
vectors of primal and dual variables respectively, rankA = m0 ≤ n0, ( · , · ) denotes
scalar product.

Assume that dual problem (2) is feasible, but it isn’t known a priory whether primal
problem (1) is feasible or not. If not then it may be transformed (or repaired) to solvable
one merely by adjusting of its right-hand-side vector. Note that such problems are
known as improper ones of the first kind [1,2].

If problem (1) is infeasible, we define its generalized solution as a solution x̂ of the
relaxed problem

min {(c, x) : Ax = b+∆b̂, x ≥ 0} (=: υ̂) , (3)

where ∆b̂ =argmin{∥∆b∥:Ax = b+∆b, x ≥ 0}, ∥ · ∥ is Euclidean norm. Obviously, the
set of feasible solutions for (3) coincides with

M = Argmin
x≥0

∥Ax− b∥ .

If (1) is solvable, then ∆b̂ = 0, and generalized solution introduced above coincides
with an usual one.

As mentioned above, in [10,11] two numerical methods were proposed which being
applied to LP problem (1) give its solution if such solution exists, or automatically
deliver its generalized solution x̂, if it is not so. Below we discuss how they may be fit
to parallel calculations in MPI-type paradigm under the assumption that constraints
matrix in (1) has a block-angular structure.

Two types of infeasible constraint angularity are investigated in this paper:
a) block-angular matrix with linking columns and
b) block-angular matrix with linking rows.
Both variants exploit parallel algebraic operations with matrices.

2 Block-Angular Matrices with Linking Columns

Consider the case when constraints matrix in infeasible problem (1) has the following
structure

A =


Q1 P1

Q2 P2

. . .
...

Qn−1 Pn−1

Qn Pn

 . (4)
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To take the advantage of this structure for parallelization of the calculation process,
make use of the mixed barrier-penalty-type function for problem (1)

Φ(ϵ;x) = (c, x) +
1

2ϵ
∥Ax− b∥2 − ϵ

n0∑
i=1

lnxi, ϵ > 0 . (5)

Consider the unconstrained smooth optimization problem: find x̂ϵ > 0 such that

Φ(ϵ; x̂ϵ) = min
x>0

Φ(ϵ;x) . (6)

As shown in [10], if optimal set of (3) is bounded, then an unique minimizer x̂ϵ exists
for every ϵ > 0, even in improper case. This minimizer satisfies to nonlinear vector
equation

∇xΦ(ϵ;x) = c+ ϵ−1AT (Ax− b)− ϵX−1e = 0 , (7)

where X is diagonal matrix with coordinates xi on its diagonal, i.e. X = diag(x),
e = [1, . . . , 1]T .

Theorem 1 ([10]). Suppose that the feasible set of the dual problem (2) has an interior
point. Then

(c, x̂ϵ) → υ̂, b−Ax̂ϵ = ∆b̂ϵ → ∆b̂

as ϵ → +0.

Corollary 1. Let the optimal vector x̂ of the relaxed problem (3) be unique. Then
x̂ϵ → x̂ as ϵ → +0.

To solve equation (7), one can apply Newton method as follows

x(t+ 1) = x(t)− αtw(t), w(t) = H−1(ϵ;x(t))∇Φ(ϵ;x(t)), t = 0, 1, . . . .

Here x(0) is an appropriate start point, αt is a step parameter (usually αt ≡ 1), H(ϵ; ·)
is a Hessian of the function Φ(ϵ; ·), ∇xΦ(ϵ; ·) is its gradient.

Without going deep into all issues of implementation of this algorithm (e.g. see [15]
for details), we only consider how to calculate vector w(t) in parallel. In our case

H(ϵ;x) = ϵ−1ATA+ ϵX−2 .

Hence, to find w(t) one has to solve a sparse linear system

H(ϵ;x(t))w = ∇Φ(ϵ;x(t)) (8)

with

H(ϵ;x) =


H1 MT

1

H2 MT
2

. . .
...

Hn MT
n

M1 M2 . . . Mn Mn+1

 ,
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where

Hi = ϵ−1QT
i Qi + ϵX−2

i (i = 1, . . . , n), Mi = ϵ−1PT
i Qi (i = 1, . . . , n) ,

Mm+1 = ϵ−1
n∑

i=1

PT
i Pi + ϵX−2

n+1 .

Diagonal matrices Xi = diag(xi) above correspond to the partition of a primal vector
x onto sub-vectors xi according to matrix partition (4).

Sparse structure of the Hessian gives us the opportunity to solve linear system (8)
in parallel mode (see section 4 for details).

3 Block-Angular Matrices with Linking Rows

Now consider the case when

A =



Q1

Q2

. . .

Qn−1

Qn

P1 P2 . . . Pn−1 Pn


. (9)

To exploit this structure for parallelization of the calculation process, make use of the
regularized barrier-type function for problem (2)

Ψ(ϵ;x) = (b, y)− ϵ

2
∥y∥2 + ϵ

n0∑
i=1

ln (ci − (Ai, y)), ϵ > 0 , (10)

where Ai denotes the i-th column of the matrix A. Function (10) is finite and strongly
concave on Ω = {y:AT y < c}. Therefore, for every ϵ > 0 there exists an unique vector
ŷϵ such that

Ψ(ϵ; ŷϵ) = max
y∈Ω

Ψ(ϵ; y) . (11)

Note that ŷϵ satisfies to nonlinear vector equation

∇yΨ(ϵ; ŷϵ) = b− ϵŷϵ + ϵAD(y)−1e = 0 , (12)

where diagonal matrix D(y) = diag(c − AT y) has elements di = ci − (Ai, y) on its
diagonal, e = [1, . . . , 1]T .

Theorem 2 ([11]). Let ŷϵ be the maximizer of Ψ(ϵ; ·) on y. Then the vector x̂ϵ with
coordinates

x̂i
ϵ = ϵ(ci − (Ai, ŷϵ))

−1, i = 1, . . . , n0 ,

is the minimizer of Φ(ϵ; ·) on x > 0.
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Corollary 2. Suppose that the feasible set of the dual problem (2) has an interior

point. Then ϵŷϵ → ∆b̂ as ϵ → +0.

To solve equation (12) one can apply Newton method again. Now its iterations are
as follows

y(t+ 1) = y(t) + αtw(t), w(t) = H−1(ϵ; y(t))∇yΨ(ϵ; y(t)), t = 0, 1, . . . .

Here y(0) is an appropriate start point, αt is a step parameter (usually αt ≡ 1), H(ϵ; ·)
is a Hessian of the function Ψ(ϵ; ·), ∇yΨ(ϵ; ·) is its gradient.

In the case under consideration

H(ϵ; y) = ϵI + ϵAD(y)−2AT ,

where I is the identity matrix of appropriate order. Therefore, to find w(t) one has to
solve a sparse linear system

H(ϵ; y(t))w = ∇yΨ(ϵ; y(t)) (13)

with

H(ϵ;x) =


H1 MT

1

H2 MT
2

. . .
...

Hn MT
n

M1 M2 . . . Mn Mn+1

 ,

where

Hi = ϵIi + ϵQiDi(y)
−2QT

i , Mi = ϵPiDi(y)
−2QT

i , (i = 1, . . . , n) ,

Mn+1 = ϵIn+1 + ϵ
n∑

i=1

PiDi(y)
−2PT

i .

Here, diagonal matrices Di(y) = diag(ci−QT
i yi−PT

i yn+1) correspond to the partition
of a dual vector y onto sub-vectors yi according to matrix partition (9).

Again sparse structure of the Hessian gives us the opportunity to solve linear system
(13) in parallel mode.

4 Parallel Scheme of Implementation

It is easy to see that in the both cases above the structure of the Hessians is just the
same. Let us discuss how to solve a sparse linear system of the type

H1 MT
1

H2 MT
2

. . .
...

Hn MT
n

M1 M2 . . . Mn Mn+1




w1

w2

...
wn

wn+1

 =


f1
f2
...
fn
fn+1

 (14)
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on massively parallel processor (MPP) or cluster of workstations (COW) with MPI-
instructions.

For simplicity assume that a number of processors in our MIMD-computer is equal
to n + 1. Let processors with indexes from 1 to n be called the slaves and processor
with index n + 1 be called the master. Suppose that input data of LP problem (1) is
distributed between the slaves in such a manner that the slave with index i stores the
matrix pair (Qi;Pi) in its local memory. Therefore, each slave with index i can calculate
its own part of Hessian (Hi;Mi) and some auxiliary matrices with index i concurrently.
The master controls the calculation process and, besides, calculates Hn+1 and other
matrices with additional index n+1. All processors exchange with the messages using
MPI-instructions like send, gather and broadcast to coordinate their works.

Parallel resolution of system (14) may be as follows. At first, all the slaves calculate
its own Cholesky decomposition of Hi = LiL

T
i concurrently, then form the auxiliary

matrices Si = L−1
i MT

i , Ri = ST
i Si, and send them to the master. The master gath-

ers this matrices into a global sum H̄n+1 = Hn+1 −
∑n

i=1 Ri and then calculates its
own Cholesky decomposition of H̄n+1 = Ln+1L

T
n+1. As a result the global Cholesky

decomposition is calculated
H1 MT

1

H2 MT
2

. . .
...

Hn MT
n

M1 M2 . . . Mn Mn+1

 =


L1

L2

. . .

Ln

ST
1 ST

2 . . . ST
n Ln+1




LT
1 S1

LT
2 S2

. . .
...

LT
n Sn

LT
n+1

 .

Further, all the slaves solve their own angular systems Lizi = fi concurrently, then
form the products hi = ST

i zi and send them to the master. The master gathers this
vectors, forms the global sum f̄n+1 = fn+1−

∑n
i=1 hi and solves its own angular system

Ln+1zn+1 = f̄n+1. Thereby, a solution of the following system is obtained
L1

L2

. . .

Ln

ST
1 ST

2 . . . ST
n Ln+1




z1
z2
...
zn
zn+1

 =


f1
f2
...
fn
fn+1

 .

Finally, the master solves the angular system LT
n+1wn+1 = zn+1 and broadcasts wn+1 to

all the slaves. The slaves solve their angular systems LT
i wi = zi−Siwn+1 concurrently.

Therefore, the following system is solved
LT
1 S1

LT
2 S2

. . .
...

LT
n Sn

LT
n+1




w1

w2

...
wn

wn+1

 =


z1
z2
...
zn
zn+1

 .

It means that all components of w = [w1, . . . , wn, wn+1] are found.
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Note that similar parallel scheme of calculations was applied by author for sparse
linear system in [16], where one can find the estimates of possible speedup

Sn+1 ≈ n

1 + Cm−1
→ n (m → ∞) , (15)

as well as an example of implementation scheme for Parallel Matlab and the encour-
aging results of numerical experiments with large LP problems. In (15) C > 0 is some
technical constant depending upon concrete computer equipment, m characterizes the
average dimension of the blocks of the matrix A in problem (1). If m is comparatively
large then the speedup tends to n.

5 Conclusion

For a linear program with block-angular matrix of constraints, two parallel second
order optimization methods are proposed. The methods give usual solution if initial
problem is solvable, and automatically deliver a solution of some relaxed LP problem,
otherwise. The methods use penalty and barrier functions as well as Tikhonov regular-
ization of Lagrangian of initial LP problem. The methods contain a small parameter
which tends to zero and minimize the residual of constraints. Parallel calculations of
matrix operations follow MPI-type paradigm.
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