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Abstract. The optimal control problems for SP1 and Rosseland approximations 

of evolution radiative heat transfer are considered. The problems are solved by 

weak form technique and Lagrange method. Numerical experiments for borosil-

icate glass are done. Numerical convergence of optimal control problem for SP1 

approximation to Rosseland is studied. 

1 Introduction 

The interest in studying problems for complex heat transfer models [1], where the 

radiative, convective, and conductive contributions are simultaneously taken into 

account, is motivated by their importance for many engineering applications. The 

common feature of such processes is the radiative heat transfer dominating at high 

temperatures. The radiative heat transfer equation is a first order integro-differential 

equation governing the radiation intensity. The radiation traveling along a path is 

attenuated as a result of absorption and scattering. Solutions to the radiative transfer 

equation can be represented in the form of the Neumann series whose terms are pow-

ers of an integral operator applied to a certain start function. The terms can be calcu-

lated using a Monte Carlo method (see e.g. [2], [3]), which may be interpreted as 

tracking the history of energy bundles from emission to absorption at a surface or 

within a participating medium.  

Numerical and theoretical analysis of one-dimensional heat transfer models cou-

pled with the radiative transfer equation can be found in [4]–[8]. In particular, effi-

cient numerical algorithms are proposed in [6], [7]. In [5]–[8] the unconditional 

unique solvability of one-dimensional steady-state complex heat transfer problems is 

proved. Papers [9]–[12] state conditional unique solvability of three dimensions prob-

lems for complex heat transfer models. In [13] unconditional unique solvability of 

boundary-value problem for P1 approximation of 3D complex heat transfer model is 

proved.  
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A considerable number of works of optimal control problems for complex heat 

transfer models is devoted to the problems of controlling evolutionary systems (see 

e.g. [14]–[17]). In [18], [19] problems of optimal boundary control for a steady-state 

complex heat transfer model were considered. On the basis of new a priori estimates 

of solutions of the control systems, the solvability of the optimal control problems 

was proved. 

In paper [20] optimal control problems in radiative transfer are solved by means of 

the space mapping technique. Authors constructed fast numerical algorithm for solv-

ing problems using a hierarchy of approximate models. 

The numerical analysis of optimal control problem of complex heat transfer for SP1 

approximation using weak form technique and Lagrange method was considered in 

[21]. Using a similar approach we study the optimal control problem for a simplified 

model given by the Rosseland approximation. Moreover, we further consider the nu-

merical convergence of optimal control problem in SP1 approximation to Rosseland. 

2 Rosseland Approximation 

Let,                                 . The normalized evolution 

diffusion model describing radiative, conductive, and convective heat transfer in a 

bounden region   has the following form: 

              (1) 

here,   denotes the normalized temperature,   and   denote the coefficient of diffu-

sion, and radiation, respectively. The constant   and   are defined as follows: 

  
 

   
   

        
 

   
      

here,   denotes the heat conductivity,   the density,    the heat capacity,   the Steph-

an-Boltzmann constant,   the refractive index,      the maximum temperature in the 

unnormalized model, and    the absorption coefficient. 

Assume that the function   satisfy to the following condition on the boundary: 

                     (2) 

and the initial condition: 

          (3) 

Here,   denotes temperature of sources on the boundary    and      describes the 

reflective properties of the boundary. 

For problem (1)-(3) we consider the cost functional of tracking type 
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where   solves (1)–(3). Here,    is a specified desired temperature profile. Further-

more, the positive constant   allows one to adjust the weight of the penalty term. 

The main subject on the analysis in this paper is the following initial boundary 

control problem: 

          w.r.t.        
subject to system (1)–(3) 

(5) 

This optimal control problem is considered as a constrained minimization problem 

and the adjoint variables are used for the construction of numerical algorithms. 

For solving (5) and finding the optimal pair       authors use the method of La-

grange multipliers. First of all, denote the week form for (1)–(3) as follows 

               

 

     

 

              

 

      

        

 

                 

 

               

 

      

(6) 

where   denotes a test function in the Sobolev space      ,         . 

Denote the Lagrange function 

                        (7) 

with    . Here we only consider the case    . It is worth to note that   is typical-

ly called a Lagrange multiplier or adjoint variable. 

For the minimization of (7), we solve the first-order optimality system 

      (8) 

The state equation for (8) is defined as follows 

                 (9) 

Here and in the following,        
     denote several test functions. 

The adjoint equation is defined as follows 

                

 

           

 

           

 

      

         

 

                

 

               

 

    

              

 

               

 

        

(10) 

By denoting                , the gradient of    may be expressed as 
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                  (11) 

For solving problem (5) we use an iterative algorithm. On the first stage, the state 

equation (9) is solved by a time-discrete approximation and semi-implicit scheme. On 

the second stage, the adjoint equation (10) is solved by time-discrete approximation, 

starting from the terminal time (   ). On the third stage, a new control variable   is 

computed by using (11) and the Armijo rule. Afterwards, this algorithm is repeated 

until the relative gradient of    is less than a small parameter  . The construction of the 

algorithm is presented below. 

1. Choose      

2.     

3. REPEAT 

(a) Choose       

(b) FOR             DO 

Find      
   from (9) 

(c)       

(d) FOR               DO 

Find    from (10) 

(e)     
(f) REPEAT 

(i) FOR             DO 

    
    

          
   using (11) 

(ii) FOR             DO 

Find        
   from (9) 

(iii)       

(g) UNTIL      
   

         
   

           
   

  
 
 

(h)        

4. UNTIL 
        

   
  

        
   

  
   

In the algorithm, we used the following notation for variables:              
   

           
          , where    denotes the control function on step # . The set 

       
  denotes a uniform grid on the interval      . It is worth noting that step 3(f-g) 

describes the Armijo rule.  

Further, we consider a glass cooling process which was already considered for Pn 

in [22]. A numerical experiment for borosilicate glass is investigated in the domain 

                        and          . 

Area parameters are represented in Table 1. 
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Table 1. Area Parameters 

  
 

    
   

 

   
    

 

   
   

 

      
          

                        
       

           

 

Consider experiment results (Fig. 1-2). It is worth noting that the proposed algo-

rithm for this example converges after 4 iterations. Convergence of the cost functional 

  to the minimum value of 89.59 is given in graphical form in Fig. 1. Temperature 

profile of glass, limited to goal temperature   , is shown in Fig. 2. 

 

                . 
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3 SP1 Approximation 

Furthermore, we consider one more diffusion model of complex heat transfer in 

SP1 approximation. The process of propagation of heat transfer is investigated in the 

same medium   with same boundary and initial conditions. It is known that the 

Rosseland approximation is a simplification of the SP1 approximation [1], [23]. 

Rosseland approximation is valid when the medium is optically thick. 

The normalized evolution diffusion model describing radiative, conductive, and 

convective heat transfer in a bounded region   has the following form [24] 

             (12) 

            (13) 

                   (14) 

                 (15) 

          (16) 

here,    
    
 . Note the week form for (12), (14), (16) as follows 

                  

 

      
 

               
 

    

         
 

     
 

  
         
 

      

 

here    denotes several test function in Sobolev space      ,           . 

Note the week form for (13), (15) as follows 

                    
 

              
 

    

          
 

      

 

here p_1 denotes several test function in Sobolev space H^1 (Q), analogically. 

For problem (12)–(16) authors consider the same cost functional (4) and solve ana-

logical initial-boundary control problem 
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          w.r.t.          
subject to system (12)–(16) 

(17) 

We then construct the Lagrange function 

                                        (18) 

in a similar fashion, where         and         denote the weak form of (12), 

(14), (16) and (13), (15) respectively. 

For the minimization of (18), we solve the corresponding optimality system 

      (19) 

We designed a similar algorithm for solving (19). The analysis of numerical experi-

ments for SP1 approximation for borosilicate glass is considered in [21]. 

4 Studying a convergence of solutions 

In this section, we consider a numerical convergence of the optimal control prob-

lem in SP1 approximation to solution in Rosseland when     

                              (22) 

In the following, we denote           as the optimal solution of (17) for SP1 approxi-

mation with the cost functional     and           denotes the optimal solution of (5) for 

Rosseland approximation with cost functional   . 

The numerical experiment for borosilicate glass is done. An exemplary case study 

is a thin bar (5x5 cm) that has been cooled during 300 sec. On the Fig. 3, we present 

the values of the cost functional     which depends on   for (17) and    for (5). One 

clearly observes that the functional values of (17) converge to the one of (5). 

Thus, we have shown, numerically, that solutions of the optimal control problem 

for the SP1 approximation converges to the solution of optimal control problem for 

the Rosseland approximation for any initial temperature and medium when      
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Fig. 3. Functions:                    – black curve;                     gray curve. 

Conclusions 

We studied the optimal control problems of complex heat transfer with diffusion 

approximations. For a special cost functional that allows one to find the optimal tem-

perature of sources on the boundary and get target temperature in the medium, we 

designed iterative algorithms. For some examples we showed a convergence of the 

optimal costs in the SP1 approximations to optimal cost in the Rosseland approxima-

tion in the     limit. Since the simplified Rosseland model is more applicable for 

computing because it needs less computation for solving, such results could be used 

in glass production. 
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