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Abstract. A method from a class of bundle methods is proposed to solve an
unconstrained optimization problem. In this method an epigraph of the ob-
jective function is approximated by the set which is formed on the basis of the
convex quadratic function. This method is characterized in that iteration points
are constructed in terms of information obtained in the previous steps of the
minimization process. Computational aspects of the proposed method are dis-
cussed, convergence of this one is proved, and convergence rate of the iteration
process is obtained.
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1 Introduction

A class of bundle methods is quite wide (e.g. [2–6]). Such methods use multi-step
approach of constructing iteration points to solve a convex programming problem.
Namely, the next approximation is formed in term of prehistory of the solution process
by minimizing an auxiliary convex quadratic function. Taking into account this feature
the given methods profitably differ from one-step methods by constructing anti gully
trajectory of the iteration points and good convergence rate.

In this paper the method is proposed for solving a convex programming problem
which belongs to the mentioned class. The suggested method also applies multi-step
technique of constructing approximations. Moreover, note that unlike the famous bun-
dle methods the solution of the auxiliary quadratic programming problem is obtained
in the proposed method by the formula, and this fact is convinient to use in practical
implementations of the method.

2 Problem Setting

The method is proposed for solving the following problem:
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min{f(x) : x ∈ Rn}, (1)

where f(x) is a continuously differentiable convex function defined in an n-dimensional
Euclidian space Rn, and the gradient of the function f(x) satisfies Lipschitz continuous
condition |f ′(x)− f ′(y)| ≤ L||x− y|| for all x, y ∈ Rn with the parameter L > 0.

Let f∗ = min{f(x) : x ∈ Rn}, X∗ = {x ∈ Rn : f(x) = f∗} ̸= ∅, epi(f) = {(x, δ) ∈
Rn+1 : δ ≥ f(x)}, K = {0, 1, . . .}. By |B| denote the cardinality of the set B ⊂ Rn.

3 The Bundle Method

A sequence {xk}, k ∈ K, is constructed by the proposed method as follows.
0. Define numbers l > 0, γ > 0 and r ∈ K such that r ≥ 1. Select any point v ∈ Rn.

Assign η0 = l, k = 0 and B0 = {v}.
1. Choose

xk = argmin{f(y) : y ∈ Bk}, (2)

and find a point zk as a solution of the problem

min{φk(x) : x ∈ Rn}, (3)

where
φk(x) = f(xk) + ⟨f ′(xk), x− xk⟩+

γ

2
||x− xk||2. (4)

Determine φk = φk(zk).
2. Choose a number αk(b) ∈ (0, 1] for each b ∈ Bk such that

(uk(b), µk(b)) = (b, θk(b)) + αk(b)
(
(zk, φk)− (b, θk(b))

)
∈ epi(f), (5)

where
θk(b) = f(b) + ηk. (6)

.
3. Find a point

wk = argmin{f(uk(b)) : b ∈ Bk}. (7)

4. If the inequality |Bk| < r is defined, then construct the next set

Bk+1 = Bk

∪
{wk}. (8)

Otherwise find a point vk = argmax{f(a) : a ∈ Bk}, and determine

Bk+1 = Bk \ {vk}
∩

{wk}. (9)

5. Assign

ηk+1 =
l

(k + 1)2
, (10)

increment k by one, and go to Step 1.
Firstly, lets represent some properties of the suggested method.
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Remark 1. The point v which is described at Step 0 in the algorithm is the initial
iteration point. Unfortunately, there is no any general approach of constructing the
initial iteration point in nonlinear programming methods. But in the process of solving
practical optimization problems there are some informations to construct a region
which approximate the set of solutions. Consequently, it is obviously to select the
initial iteration point v as close as possible to the mentioned region.

Remark 2. Note that as well as the multi-step methods the proposed method uses
prehistory of the solution process. Namely, according to (3), (5), (7) and Step 4 of the
algorithm the next approximation xk+1, k > r, is selected from the set Bk+1 which is
constructed on the basis of the last r > 0 iteration points of the sequence {xi}, i ∈ K.

In the bundle methods each iteration point is obtained by minimizing the auxiliary
quadratic function constructed on the basis of the model of the objective function. Since
this model consists of several cutting planes, then it is nessesary to use various numerical
methods for solving quadratic programming problems. In the proposed method the
model of the objective function contains only one cutting plane. Thus, the solution of
the auxiliary quadratic problem can be found by the formula. This result is represented
in the following statement.

Lemma 1. Suppose that sequences {zk}, {φk}, k ∈ K, are constructed by the proposed
method. Then equalities

zk = xk − f ′(xk)

γ
, (11)

φk = f(xk)−
||f ′(xk)||2

2γ
(12)

are defined for all k ∈ K.

Proof. Note that the function φk(x) is differentiable and strongly convex. Consequently,
problem (3) has unique solutions for all k ∈ K. Lets compute partial derivatives of the

function φk(x) which have the following form: ∂φk(x)
∂x[i] = f ′(xk)[i] + (x[i]− xk[i])γ = 0,

i = 1, n. Hence, equation (11) is defined. Further, in view of (4), (11) we have φk =

φk(zk) = f(xk)− ||f ′(xk)||2
γ + ||f ′(xk)||2

2γ = f(xk)− ||f ′(xk)||2
2γ . The lemma is proved.

Lemma 2. Suppose that the sequence {xk}, k ∈ K, is constructed by the suggested
method. Then the inequality

f(xk+1) ≤ f(uk(xk)) ≤ f(xk) + ηk
(
1− αk(xk)

)
− αk(xk)

2γ
||f ′(xk)||2 (13)

is satisfied for all k ∈ K.

Proof. In accordance with ways (8), (9) of constructing the set Bk+1 the inclusion
wk ∈ Bk+1 is defined for all k ∈ K. Hence, in view of (2), (7) the expression f(xk+1) ≤
f(wk) ≤ f(uk(xk)) is determined. Further, taking into account (5), (6), (12) we have
f(uk(xk)) ≤ µk(xk) = θk(xk) + αk(xk)

(
φk − θk(xk)

)
= f(xk) + ηk + αk(xk)f(xk) −

αk(xk)
2γ ||f ′(xk)||2−αk(xk)f(xk)−αk(xk)ηk = f(xk)+ηk

(
1−αk(xk)

)
− αk(xk)

2γ ||f ′(xk)||2.
The Lemma is proved.
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Before proving convergence of the proposed method lets construct the parameter
αk(xk), k ∈ K, by the following rule.

Lemma 3. If
(φk, zk) ∈ epi(f), (14)

then αk(xk) = 1. Otherwise αk(xk) is selected so that the equation

f(uk(xk)) = µk(xk) (15)

is defined. Then there exists a constant c > 0 such that

αk(xk) ≥ c ∀k ∈ K. (16)

Proof. Lets fix numbers ε ∈ (1, 2) and i ≥ 0 such that

L2−i

γ
≤ 2− ε, (17)

where L > 0 is Lipshitz constant of the gradient f ′(x).
Since f(x) is a continuously differentiable functions, and its gradient satisfies Lip-

shitz condition, then in view of ηk(1 − 2−i) ≥ 0 for all k ∈ K we give f(xk) −
f(xk − 2−i

γ f ′(xk)) + ηk(1− 2−i) ≥ f(xk)− f(xk − 2−i

γ f ′(xk)) ≥ ⟨f ′(xk),
2−i

γ f ′(xk)⟩ −
L
2 ||

2−i

γ f ′(xk)||2 = 2−i

γ ||f ′(xk)||2− L
γ2 2

−2i−1||f ′(xk)||2 = 2−i−1

γ ||f ′(xk)||2ε ≥ 2−i

2γ ||f ′(xk)||2
for all k ∈ K.

Hence, by putting

ūk = xk − 2−i

γ
f ′(xk) = xk + 2−i(zk − xk), (18)

µ̄k = f(xk) + ηk(1− 2−i)− 2−i

2γ
||f ′(xk)||2 = θk(xk) + 2−i(φk − θk(xk)), (19)

we have f(ūk) ≤ µ̄k, consequently,

(ūk, µ̄k) ∈ epi(f). (20)

Now lets prove that there exist a constant c > 0 such that inequality (16) is defined.
Note that according to conditions of the lemma the parameter αk(xk) is constructed
by 2 ways. Firstly, if inclusion (14) is determined for some k ∈ K, then αk(xk) = 1.
Secondly, let the parameter αk(xk) is defined in accordance with (15). In this case
according to (5) the point (uk(xk), µk(xk)) is situated in the intersection of the segment
[(zk, φk), (xk, θk(xk))] with the border of the set epi(f), consequently, we have

(uk(xk), µk(xk)) /∈ intepi(f). (21)

Moreover, in view of (18), (19) we get

(ūk, µ̄k) ∈ [(zk, φk), (xk, θk(xk))]. (22)
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Now taking into account (20)-(22) lets suppose that

2−i > αk(xk). (23)

Then there exists a number βk > 0 such that

(ūk, µ̄k) = (xk, θk(xk)) + βk

(
(uk(xk), µk(xk))− (xk, θk(xk))

)
. (24)

Hence, in view of (18), (19), (23) and using equality (5) while (uk(b), µk(b)) = (uk(xk), µk(xk))

the expression βk = 2−i

αk(xk)
> 1 is defined. Further, from (24) it follows that (uk(xk), µk(xk)) =

(xk, θk(xk)) +
1
βk

(
(ūk, µ̄k) − (xk, θk(xk))

)
= (ūk, µ̄k) + β̄k

(
(xk, θk(xk)) − (ūk, µ̄k)

)
,

where β̄k = (1 − 1
βk

) ∈ (0, 1). Then from Theorem 3 [7, p. 153] it follows that

(uk(xk), µk(xk)) ∈ intepi(f) which contradicts to condition (21). Thus, assumption
(23) is wrong, consequently, αk(xk) ≥ 2−i. Now taking into account all cases of con-
struction of the parameter αk(xk) for all k ∈ K we have αk(xk) ≥ c > 0. The theorem
is proved.

Remark 3. If inclusion (14) is not satisfied for some k ∈ K, then (uk(xk), µk(xk))
should be found as a boundary point of the set epi(f) by solving one-dimensional
equation (15). Note that such equation is also solved in embedding methods [1] to
construct cutting hyperplanes.

Theorem 1. Suppose that the sequence {xk}, k ∈ K, is constructed by the proposed
method in accordance with conditions of Lemma 3, the set Mη(x0) = {x ∈ Rn : f(x) ≤
f(x0)+η} is bounded, where η =

∑∞
k=0 ηk. Then the sequence {xk}, k ∈ K, is bounded,

and the following equality takes place lim
k∈K

f(xk) = f∗. Moreover, convergence rate

f(xk)− f∗ ≤ c0
k
, k ∈ K, k ≥ 1, (25)

is determined, where c0 > 0.

Proof. In accordance with (13) and Lemma 3 the inequality

f(xk+1) ≤ f(xk) + ηk − c

2γ
||f ′(xk)||2. (26)

is defined. Hence,
f(xk+1) ≤ f(xk) + ηk, k ∈ K. (27)

Since f(xk) ≥ f∗ > −∞, then from Lemma 2 [7, p. 87] and (10), (27) it follows that
there exists a limit lim

k∈K
f(xk) ≥ f∗, consequently, lim

k∈K
(f(xk)−f(xk+1)) = 0. Summing

inequalities (27) from 0 to m− 1 by k we have f(xm) ≤ f(x0)+
∑m−1

k=0 ηk ≤ f(x0)+ η.
Hence, {xk} ⊂ Mη(x0), and the sequence {xk}, k ∈ K, is bounded. Further, in view of
(26) we get lim

k∈K
f ′(xk) = 0, consequently, lim

k∈K
f(xk) = f∗.

Now lets obtain convergence rate of the iteration process. For all x∗ ∈ X∗ we have

0 ≤ f(xk)− f∗ ≤ ||f ′(xk)||||xk − x∗|| ≤ d||f ′(xk)||, k ∈ K, (28)
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where d ≥ diamMη(x0). Suppose ak = f(xk)− f∗. Then from (26), (28) it follows that
ak − ak+1 = f(xk)− f(xk+1) ≥ c

2γ ||f
′(xk)||2 − ηk ≥ c

2γda
2
k − ηk. Then in view of (10)

and by putting A = max{l, 2Ld
c } we have ak+1 ≤ ak − a2

k

A + A
k2 for all k ∈ K. Hence,

from Lemma 5 [7, p. 89] under conditions I0 = K and I1 = ∅ convergence rate (25) is
proved.
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