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Abstract. A boundary optimal control problem for a nonlinear nonstationary
heat transfer model is considered. The model describes coupled conduction and
radiation within the P, approximation. The control parameter is related to the
emissivity of the boundary and varies with time. The optimal control problem
is to minimize or maximize a cost functional which is assumed to be monotonic.
Sufficient conditions of optimality are derived and the convergence of a simple
iterative method is shown.
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1 Introduction

Radiative heat transfer models can be used for describing various engineering processes.
These models contain parameters related to some properties of a medium or a boundary
surface. Optimal control problems for such models consist in determination of some
parameters values in order to minimize (or maximize) a given cost functional. Papers
[1-5] deal with problems of boundary temperature control for radiative heat transfer
models including S Py approximations of the radiative transfer equation (RTE). Note
that approximations of RTE are employed to simplify numerical solution of governing
equations, and SP; (P;) approximation is valid mainly for optically thick and highly
scattering media at large optical distances from the boundary [6,7].

In this paper, we consider a diffusion model (P; approximation of RTE) including a
nonstationary heat equation combined with a stationary equation for the mean intensity
of thermal radiation. The control parameter depends on the emissivity of the boundary.
We will assume that the cost functional is monotonic. Optimality systems for such
functionals become simpler and do not contain an adjoint equation. Moreover, the
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monotonicity condition allows to obtain sufficient conditions of optimality and prove
the convergence of a simple iterative method.

Paper [8] deals with the analogous optimal control problem of obtaining a desired
temperature distribution by controlling the emissivity of the boundary. Note that the
cost functional, representing L2-deviation of the temperature from the desired field,
turns monotonic if the desired temperarure equals 0. A similar optimal control problem
was investigated in [9, 10], where the emissivity does not vary with time, and the
work [11] is devoted to an analogous problem for a steady-state P; model. In the
mentioned papers, an analog of the bang-bang principle for the optimal control was
proven. Based on this principle, it is possible to construct efficient numerical algorithms
for solving optimal control problems. In a general case, a simple iterative method fails
to converge, that is why a generalized algorithm was applied in [9, 10]. However, if
the cost functional is monotonic, the convergence of a simple iterative method can be
proven.

2 Problem formulation

The nonstationary normalized P, model of radiative-conductive heat transfer in a
bounded domain 2 C R3 has the following form [9]:
00/0t — a A + bk, (|0]0° — ) =0, —alp + ka(p — [0]6%) =0,
adnf+ B0 — 0,)|r =0, adnp+ulp —6,)|r =0,
0)t=0 = bp.
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Here, 0 is the normalized temperature, ¢ the normalized radiation intensity averaged
over all directions, k, the absorption coefficient, and 6, the boundary temperature
taken in Newton’s law of cooling. The parameters a, b, and « are positive constants, and
B = pB(x), u=ulx,t),x € I', t € (0,T) are positive functions. The control parameter
u depends on the emissivity e of the boundary surface as follows: © = ¢/2(2 — €). The
symbol d,, denotes the derivative in the outward normal direction n on the boundary
I':=00.

Define the set of admissible controls U,y of functions wu(z,t) such that u; < u <
ug, where uq(x,t) and ug(x,t) are positive functions. The problem of optimal control
consists in the determination of functions u € U,g, 8, and ¢ which satisfy the conditions
(1)-(3) and minimize (or maximize) an objective functional J (6, ¢) which is assumed to
be monotonic. The precise definition of monotonicity will be given in the next section.

3 Formalization of the optimal control problem

Suppose that {2 is a Lipschitz bounded domain, I' = 802, ¥ = I'x(0,T), Q = 2x(0,T),
and the model data satisfy the following conditions:

(i) B € L>®(I), ur,ug,0p € L=(X), 0 < o < B, 0 < up < uy < ug, By, up = const,
Oy > 05

(ZZ) 0< 90,(,00 S LOO(Q)
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Denote H = L?(02), V. = H'(£2). Note that V € H = H' C V'. Let the value of
a functional f € V'’ on an element v € V' be denoted by (f,v), and (f,v) is the inner
product in H if f and v are elements of H. Define the space W = {y € L?(0,T;V):y' €
L2(0,T;V')}, 3 = dy/dt, as well as the space of states Y = W x L2(0,7;V) and the
space of controls U = L*(X), Upya = {u € U: u; < u < us}.

Definition 1. A pair {6, 0} € Y is called weak solution of the problem (1)-(3), that
corresponds to the control u € Ugq, if the following equalities are fulfilled for any
v,weV ae. on (0,T):

(0, v) + a(V6, Vo) +/ B(0 — 0y vd I + brqa(]0]0° — @, v) = 0, (4)
I
(V. V) + [l = Byud + o — 010, 0) = 0, (5)
I

and e‘t:() = 00.

Theorem 1. (cf. [9]) Let the conditions (i), (i) be satisfied. For any u € Uyq the
problem (1)-(3) has a unique weak solution {0, ¢}, and the following inequalities are
fulfilled: 0 <9 < M, 0< ¢ < M*, where M = max{||0p| L (), |00l L= (2) }-

Definition 2. The cost functional J: Y N[L>®(Q)]? — R is called monotonic, if, given
any 0 < 01 <03, 0 <1 <2 ae inQ, we have J(01, 1) < J(02,¢2).

Next we state two optimization problems not depending on a specific monotonic
cost functional.

Problem 1. Find u € U,q such that for any u € U,q we have §§ 0, p<pae inQ.
Problem 2. Find u € U,y such that for any u € U,q we have 52 0, 2> pae. in Q.

Here, 6 = 0(u), p = p(u), 0 = 0(u), p = p(u). A weak solution of the problem
(1)—(3), corresponding to the control u € Uy,q, is denoted by {6(u), ¢(u)}.

Remark 1. Tt is readily seen that solutions of problems 1 and 2 are solutions of optimal
control problems J(6, ¢) — inf and J(6, ¢) — sup, respectively, where J is monotonic.

Definition 3. Solutions of the problems 1 and 2 are called strong optimal controls.

Let us give an example of a monotonic cost functional. Suppose that 7 C I' is a
part of the boundary, on which w is given that is u = u; = ug on I'7. The functional
represents the energy outflow through I7:

J(0, ) = /0 /F (B(6 = 6y) + buy (p — 0)) dI'dt.

Note that our goal is to minimize (or maximize) the temperature and radiative
intensity fields in the entire domain and time interval. Therefore, the answer will be
the same for any monotonic cost functional.
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4 Optimality conditions

Lemma 1. Let u,u € Uyq, 0 = 0(u), ¢ = p(u), 0 = 0(u), ¢ = ¢(u), and one of the
following conditions is satisfied:

Ui, Zf ()0_91?<07 Uut, Zf 6_0g‘<07
a)u: . 4 b)U: s~ 4
uz, if o —0,; >0 uz, if ¢ —0; >0.

Then o < @, 0 < 0 a.e. in Q.
Proof. Set 6 = 0—0, % = ¢ — & and define the functions n = max{#,0}, 1 = max{,0}.
Set v =7, w =1 in (4), (5) and integrate in t. We obtain
1 ¢ ~ ~
s+ [ fal vl + [ pitar + b, (0400 + Pyon)] ar -
0 r
t t
— o [ @ondr <o, [ (wmyar, (©
0 0
t
[ arwe s [@ar s [ - - svar v elol?] i -
0 r r

¢ t
—ro [ (04006 +P5.0)dr <w, [ (040@ +Pn0)ar. (0
0 0
Condition a) implies that the third term in the left-hand side of (7) is nonnegative.
¢ ¢
Thus, we obtain the estimate / (7)) ||Pdr < Cl/ |n(7)||?dr. Then (6) yields the
0 0

estimate

HWWS@AWMWW

It follows from Gronwall lemma that n =1 = 0, and so 6 < 5, p < pae. in Q.
The statement for condition b) can be proven similarly. a

The following theorem follows from Lemma 1 and establishes a sufficient condition
of optimality.

Theorem 2. Let u € Uyq, » = o(u), and
- uy, if <p—9§<0,
uz, if ¢ —0f>0.
Then u is a solution of the problem 1.
Similar arguments lead to
Theorem 3. Let u € Uyq, » = ¢(u), and
uy, if @—9? > 0,
u =
ug, if ¢ —0) <O0.

Then u is a solution of the problem 2.
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Next prove the uniqueness of the strong optimal control.

Theorem 4. If u and u are strong optimal controls, then u = u a.e. in {(x,t) €
2oz, t) # 0} (z, 1)}

Proof. By definition, p(u) = ¢(a) = ¢, 0(u) = 6(z) = 0 a.e. in Q. It follows from (5)
that

/ [u(p — 0;) — u(p — 0,)] vdl" = /(u — ) (¢ — 0)vdl" =0 Yo € V a.e. on (0,T).

Hence (u — @)(p — 6}) = 0 a.e. on X, therefore, u = @ a.e. in {(z,t) € X: p(z,t) #
0 (x,t)}. o

Remark 2. Tt follows from (4), (5) that an arbitrary modification of a strong optimal
control u in the set {(z,t) € X: p(x,t) = 0} (x,t)} keeps the optimality of the control
u, because such modification does not influence on the second term in (5).

5 Iterative algorithm

Describe a simple iterative method converging to a strong optimal control. Discuss the
problem 1, considerations for problem 2 are similar.
Define the operator U: L>®(X) — L™ (X):
uy, if o —6 <0,
U(p) = : b
ug, if ¢ =6, >0.

If u € Uyq and
Ulp(u)) = u, (8)
then, by Theorem 2, u is a strong optimal control.

Consider the simple iterative method for solving the equation (8). Choose an arbi-
trary initial guess u® € U,q4. The iterative algorithm is as follows: u¥*1 = U(¢*) where
o = k), k=0,1,....

It follows from Lemma 1 that o**1 < ¥ (k=0,1,...) a.e. in Q. Thus, u**1 < ¥
(k =1,2,...) a.e. on X. Taking into account that these sequences are bounded, we
obtain that u* — u* a.e. on ¥, ¥ — p* a.e. in Q.

Lemma 2. ¢* = ¢p(u*) a.e. in Q.

Proof. Applying Lebesgue theorem, we obtain that u* — u* in L?(X), o¥ — ¢* in
12(Q).

It is easy to prove that the operator ¢: L?(X) — L?(Q), defined on the set Uy, is
continuous. Therefore, ¢* = p(u*) a.e. in Q. O

Lemma 3. u* = U(¢*) a.e. on X.

Proof. Because pFt! < oF a.e. in Q, we have u**! = U(pF) — U(p*) a.e. on X, and
so u* = U(p*) a.e. on X. O
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It follows from Lemmas 2, 3 that the simple iterative method converges to a solution
of (8), therefore, u* is a strong optimal control.

Theorem 5. Problem 1 (or 2) is solvable.

Remark 3. Let the solution {6, ¢} of problem (1)—(3) be computed with absolute error
¢ that is | — @| < e in @, where @ is a component of the approximate solution. Then
the strong optimal control is determined ambiguously in the set {(z,t) € X: |o(x,t) —
Oy (@, t)] < e}

6 Numerical example

As an example, consider a one-dimensional model describing the radiative heat transfer
problem in a slab of thickness L = 50 [cm]. The physical parameters are taken from [12].
The maximum temperature is chosen as Tpa.x = 500°C. Notice that the absolute
temperature is related to the normalized temperature as follows: T' = Ty, 6. Set 6, =
0.4 at z = 0, and 0, = 0.7 at x = L. The thermodynamical characteristics of the
medium inside the slab correspond to air at the normal atmospheric pressure and
the temperature 400 °C, namely a = 0.92 [cm?/s], b = 18.7 [cm/s], a = 3.3... [cm],
kq = 0.01 [em™'], and 8 = 10 [cm/s]. The initial function is 6y(z) = 0.3+ 0.72/L. The
time interval length is chosen as T' = 60 [s]. The bounds of the control are u; = 0.01
and ug = 0.5.

The boundary-value problem (1)—(3) was solved by the finite difference method
with Newton’s linearization. Namely, we use the implicit time discretization (10001
grid points) that leads to a nonlinear algebraic system at each time step after the
discretization in space (2501 grid points). After applying Newton’s method to this
system, one requires to solve a block-tridiagonal linear system with two blocks that is
possible by using standard solvers.

It is worth noting that the simple iterative method for solving problem (8) does
not require storing the solution {6, ¢} for all time grid lines, because the optimality
conditions do not contain the adjoint system. The simple iterative method is applied
to each individual time step and needs approximately 3 iterations. It follows from the
statement of the algorithm that the resulting control will always be bang-bang one.

The solution of the problem 1 at x = L is presented in Fig. 1. The strong optimal
control in the problem 1 equals uy = 0.5 at z = 0. The solution of the problem 2
at x = L is depicted in Fig. 2. The strong optimal control in the problem 2 equals
up = 0.01 at x = 0.

Figure 3 indicates the minimum and maximum temperatures at several time in-
stants, and the minimum and maximum intensities of radiation are shown in Fig. 4.
Notice that the maximum and minimum fields at large t are close to the corresponding
optimal states in the steady-state optimal control problem due to the stabilization of
the radiative heat transfer process. The strong optimal controls at large ¢ are equal to
the respective steady-state strong optimal controls as well.
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