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Abstract. The paper considers a multi-processor tasks scheduling problem
with dedicated processors. The main target is determining the tight optima
localization intervals for different sub-problems of the basic problem. Based on
the ideas of a computer-aided technique developed in the paper by Sevastyanov
and Chernykh [15] for shop scheduling problems, we elaborated a similar method
for a different-type problem (see above). For small values of the number of pro-
cessors (from 3 to 5) a computer program coped with the main target. The
extremum values of the optimum (in terms of a standard lower bound taken for
1) computed for several sub-problems of the basic problem are listed in Table 1
(page 7). In parallel with those sub-problems, so called prime-versions of those
problems were investigated, in which only jobs requiring more than one proces-
sor are allowed. An interesting phenomenon was discovered: nearly all (but one)
prime-sub-problems appeared to be polynomial-time solvable (with optima co-
inciding with their lower bounds – such instances and classes of instances were
called in [10, 11] normal). As a by-product of those results, a family of linear-
time approximation algorithms was designed (for the sub-problems listed in
Table 1) with ratio performance guarantees taken from Table 1.

Keywords: multiprocessor jobs, branch-and-bound algorithm, optima local-
ization

1 Introduction

We consider adjacent single mode multiprocessor jobs. Set J = {J1, ..., Jn} of jobs and
M of processors are given. Each job has processing time τj and may require more than
one processor at the same time. We assume that the set of processors required by a
job is given and fixed. Additionally, we assume that processors are the vertices of a
given graph G = (M, E) and the required set of processors must induce a connected
subgraph of G. By µi ⊆ M denote the set of processors required by job Ji. Let J A
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denote the set of jobs requiring processors in set A, i.e. J A = {Ji : µi = A}. We will
say that jobs in set J A are of type A.

A schedule σ is an assignment of each job Ji to an interval of length τi, such that
for any two jobs Ji and Jj with µi∩µj ̸= ∅, their intervals do not overlap. It is required
to find a schedule which minimizes the makespan. For the given graph G we denote
the above problem by Π(G); OPT stands for the optimum.

For any G, Π(G) is a special case of P |fixj |Cmax [4, 7] The difference in the two
problems is that an instance of P |fixj |Cmax may contain a job of any type, while an
instance of Π(G) contains only the jobs with the adjacent set of processors in G. In
turn, if G is a complete graph Km with m vertices, Π(G) is the same as P |fixj |Cmax

with m processors. Restrictions on the allowable types of jobs are associated with the
location of resources in space. The requirement for contiguity of resources occurs in
parallel computing using certain network topologies [7], in warehouse management[5,
9], in the domain of harbor logistic [2, 12, 14] and other applications[8, 13]. We note
that P |fixj |Cmax is known more than fourty five years and was considered in many
scheduling papers including a section in textbook ”Scheduling for Parallel Processing”
by Drozdowski [7].

However, the problem Π has been given much less attention. Duin and van der
Sluis [9] consider the problem Π when the given graph G is a path. They call this
problem as ARS-R (Adjacent Resource Scheduling). Duin and van der Sluis presented
a polynomial time exact algorithm for the case of three processors and proved NP-
hardness for the case of four processors. They also observe that ARS-R is solvable
in linear time if each job requires at most two processors. This result can be easily
extended for the case when the given graph G is a circuit with even number of vertices.
Indeed, let m processors are numbered consecutively. We divide the set of all jobs into
three sets J1, J2 and J3 such that J2 contains all single-processor jobs, J1 contain all
jobs of type {m+1, 1} and all jobs of type {i, i+1}, where i is even, and J3 contain the
remaining jobs. We note that jobs of different types may be executed in parallel. An
optimal schedule is constructed by scheduling first all jobs in J1 in an arbitrary order,
then all jobs in J2 in an arbitrary order, and, finally, all jobs in J3 in an arbitrary
order. It is easy to check that the makespan is equal to the maximal processor load.

In our paper we present the results on optima localization in terms of lower bounds
for different classes of the problem Π. Two jobs Ji and Jj are called incompatible
if µi ∩ µj ̸= ∅. Incompatibility of the jobs can be represented as an incompatibility
graph. Note that in the incompatibility graphs jobs are represented as nodes. The total
processing time of incompatible jobs is a lower bound on OPT. Denote this lower bound
by LB(G). Notice that a calculation of LB(G) is equivalent to determining a clique
in the incompatibility graph, which is a hard combinatorial problem itself. However,
for some special classes of graphs a lower bound can be found in polynomial time.
For example, if G is acyclic then a lower bound is easily computable and equal to the
maximal processor load.

For the given graph G we wish to find the minimal functional ρ(G) such that the
inequality OPT ≤ ρ(G)LB(G) holds for any instance of Π(G). We say that a schedule
is primitive if all jobs of the same type are scheduled consecutively. Dell’Olmo et al.
[6] showed that ρ(K3) =

5
4 . Actually, they proved that the length of the best primitive
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schedule is bounded by 5
4LB and this bound is tight. It is obvious, that there exists

an instance I with at most one job of each type in which OPT (I)
LB(G) attains its maximum.

Since any schedule of jobs from I is primitive, we obtained that ρ(K3) =
5
4 .

Our research is unusual since we use a computer to get the theoretical results. It is
based on the method proposed by Sevastianov and Tchernykh in [15]. They considered
the open shop scheduling problem O3||Cmax with three processors and the makespan
minimization criterion. The maximum of the maximal processor load and the maximal
job length is a trivial lower bound C̃ for the optimal makespan. Sevastianov and Tch-
ernykh proved that the length of the optimal schedule belongs to the interval [C̃, 4

3 C̃]

and this interval is tight. They also found the tight optima localization interval [C̃, 5
3 C̃]

for the three-processor assembly line problem. Both above results imply linear time
approximation algorithms as by-product.

Our paper is organized as follows. We introduce the necessary definitions and the
preliminary results in the second section. In the third section we present a branch-
and-bound algorithm which calculates ρ(G) and find an instance I ∈ Π(G) for which
OPT (I)
LB(J) attains its maximum. In the forth section we list values of ρ(G) for different

graphs G obtained by our algorithm.

2 Preliminaries

Consider a graph G. Denote the set of valid job types by A(G). Remind that we wish
to determine the value of ρ(G). So we need to prove that OPT (I) ≤ ρ(G)LB for any
instance I of Π(G) and find an instance I ′ such that OPT (I ′) = ρ(G)LB.

Lemma 1. For any graph G the supremum of OPT (I)/LB(G) over all instances I,
I ∈ Π(G) is attained on an instance which contains at most one job of each type and
does not contain jobs required all processors.

Proof is straightforward.
In what follows in this section, we deal with instances that satisfy Lemma 1. We

call such instances reduced instances.
As an example, let G be a path with four vertices, i.e. G ≡ P4, see Fig. 1.

u1 u2 u3 u4
Fig. 1. G is a path with four vertices, G ≡ P4

We have nine non-trivial job types:

A(P4) = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}}.

Thus if G ≡ P4 each reduced instance contains at most nine jobs. Without loss of
generality we assume that each instance has exactly one job of each valid type. It follows
that an incompatibility graph H is the same for all instances of Π(G). Let A ∈ A(G)
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Fig. 2. The incompability graph H

we denote by JA and τA the job of type A and its processing time, correspondingly.
The incompatibility graph for Π(P4) is shown in Fig. 2.

Let Q ⊆ H be a maximal clique in H, then
∑

JA∈V (Q) τA is a lower bound on OPT,

where V (Q) is the set of vertices of Q. Generally speaking the number of maximal
cliques grows exponentially in the number of vertices for most graphs. However in our
research we consider graphs with a few number of vertices and we can find all maximal
cliques in reasonable time. We use the algorithm by Tanaka et al. [16] to generate
all maximal cliques of a graph. Moreover, if G is acyclic graph on m vertices, the
corresponding incompatibility graph H has exactly m maximal cliques that determine
m lower bounds on OPT . For example, if G ≡ P4 we get the following lower bounds:

OPT ≥ l1 = τ{1} + τ{1,2} + τ{1,2,3},

OPT ≥ l2 = τ{2} + τ{1,2} + τ{2,3} + τ{1,2,3} + τ{2,3,4},

OPT ≥ l3 = τ{3} + τ{2,3} + τ{3,4} + τ{1,2,3} + τ{2,3,4},

OPT ≥ l4 = τ{4} + τ{3,4} + τ{2,3,4}.

Thus, LB(P4) = max{l1, l2, l3, l4}. At this point we assume that LB(G) = 1 and
measure all job processing times in these units.

We define the weight of each vertex JA in the incompatibility graph H as τA. This
graph is called a constraint graph [1, 7]. It has been observed in [1] that any feasible
schedule imposes orientation on the edges of the constraint graph. And vice versa, any
acyclic orientation of the edges in the constraint graph induces a feasible schedule.
Acyclic graph obtained by orientation of the edges in the constraint graph is called
a network [15]. Although the number of instances is infinite the number of different
networks is finite. Our goal is to show that for any instance of Π(G) there exists
an orientation of the edges such that a schedule specified by this orientation meets
OPT (I) ≤ ρ(G)LB, where ρ(G) does not depend on the instance. The makespan of

the schedule specified by a network
−→
H and an instance I is equal to the length of a

critical path in this directed graph, which, in turn, must be a complete path in the
digraph. For example, the network shown in Fig.3 has four complete paths.

It is obvious that different complete paths are critical for different instances. In the
next section we propose a branch and bound algorithm to find ρ(G) by breaking up
the set of instances of Π(G) into smaller subsets, in which instances have the same
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Fig. 3. The network obtained for some orientation of edges in the constraint graph H of
Π(P4), the transitive arcs are omitted

critical paths in the selected set of constraint graphs. The algorithm calculates upper
and lower bounds on ρ(G) over each subset of instances and use the bounds to discard
certain subsets from further consideration. The algorithm starts with ρ(G) = 1 and
search the worst instance for which ρ(G) has the maximal value. It terminates when
each subset has either produced a solution with the same ρ(G), or has been shown to
contain no better solution than the best one found so far by the algorithm.

3 Branch and bound algorithm

In this section we present a branch and bound algorithm to compute ρ(G) and to find

an instance in which OPT (I)
LB(G) attains this value. The algorithm constructs a search tree

T. Each vertex v of T contains some subset of instances of Π(G). Algorithm calculates
an upper bound on ρ(G) for this subset. In the calculation of the upper bound algorithm
finds the instance, in which the optimal makespan is a lower bound on ρ(G).

3.1 Branching

The root v0 contains all instances of Π(G). Initialize λ = 1 and ν(v0) = ∞, where λ
is a current lower bound on ρ(G) and ν(v) is an upper bound on ρ(G) in the vertex

v. Take an arbitrary network
−→
H 0 and consider a set of complete paths of

−→
H 0. We

remove paths of length less than or equal to λ. The network on Fig.3 contains two such
paths: (J{2} → J{1,2} → J{2,3} → J{1,2,3} → J{2,3,4}) and (J{3} → J{3,4} → J{2,3} →
J{1,2,3} → J{2,3,4}).

Let K(
−→
H 0) = {p1, p2, . . . , p|K(

−→
H 0)|

} be the set of non-trivial paths in the network
−→
H 0. We construct |K(

−→
H 0)| subsets, one for each path pi ∈ K(

−→
H 0). The i-th child of v0

contains instances of Π(G) that have the critical path pi in
−→
H 0.

The branching on other vertices in the search tree is similar to previous one. Let
v′ be a vertex of the search tree such that ν(v′) > λ. Let V be the set of vertices in
the v0-v

′-path in the search tree. Each vertex v in V corresponds to a critical path in
some network chosen during the branching procedure of its parent. By Kv denote the
set of such paths. We choose a network

−→
H v, such that the network

−→
H v doesn’t contain

complete paths from Kv. In the next subsection we explain how to choose
−→
H v correctly.

Finally, we use the non-trivial complete paths in
−→
H v to create children of v.
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3.2 Upper and lower bounds

Let Kv = {p1, . . . , pN}, and let δiA = 1 if a job JA ∈ pi and δiA = 0 otherwise. Then
the length of pi is equal to

∑
JA∈J δiAτA. Let η be the value of ρ(G) on the set of

instances in the vertex v. Then for any pi ∈ Kv we have
∑

JA∈J δiAτA ≥ η.

We note that any clique in H forms a (not necessary complete) path in
−→
H. Let KLB

be a set of paths corresponding to maximal cliques inH. Then we have
∑

JA∈J δkAτA ≤
1 for all pk ∈ KLB .

In order to obtain an upper bound ν(v) on ρ(G) in the vertex v, we solve the
following linear program (LP).

η → max∑
A∈A(G)

δkAτA ≤ 1, pk ∈ KLB (1)

∑
A∈A(G)

δiAτA ≥ η, pi ∈ Kv (2)

τA ≥ 0, JA ∈ J .

The rational variables τA represent processing times of jobs. Inequalities (1) and
(2) must hold for any instance I ∈ v. Thus an optimal solution of LP find an instance
I ′, such that any critical path pi ∈ Kv has a length greater than or equal to η and this
value is the maximum possible. We set ν(v) = η.

If ν(v) ≤ λ we terminate branching in the vertex v. Otherwise, we construct an
optimal schedule σ∗ for instance I ′. If the number of vertices in the graph G is small
we can solve an instance I ′ in reasonable time. Let λ∗ be the length of the optimal
schedule to the instance I ′. First, if λ < λ∗ we update the lower bound λ, λ := λ∗.
Second, if η = λ∗ we terminate branching in the vertex v. Finally, let η > λ∗. Let a
network

−→
H v correspond to the schedule σ∗. Since η > λ∗, the network

−→
H v does not

contain paths from the set Kv. We use the network
−→
H v to branch the vertex v.

The algorithm terminates when ν(v) ≤ λ for all leaves in current search tree T .
Moreover, ν(v) = λ for at least one leaf v ∈ T . Finally, we obtain ρ(G) = λ.

4 Results

To present our results we introduce the following notation. We denote the complete
graph on n vertices by Kn. By Pn and Cn we denote the path on n vertices and the
cycle on n vertices, correspondingly. We also consider the star K1,n on n + 1 vertices
and the special graphs shown in Fig. 4.

R1,3: rr r r
��
HH R1,4: rr rr rHH rR3,3: rr

��
HH rr��HH

Fig. 4. The graphs R1,3, R1,4, R3,3
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A problem Π(G) is called a prime-version and denoted by Π̄(G) if only jobs re-

quiring more than one processor are allowed. Let ρ̄(G) = maxI∈Π̄(G)
OPT (I)
LB(G) . For each

selected graph G we have considered two problems: Π(G) and Π̄(G). The results ob-
tained by the branch and bound algorithm are presented in the Table 1. The rows in
Table 1 have the following meaning. Row 1 lists the value of the parameter G in the
problem Π(G). In rows 2 and 3 we present the values of ρ(G) and ρ̄(G), correspond-
ingly.

P4 P5 C3 C4 K1,3 K1,4 K4 R1,3 R1,4 R3,3

ρ(G) 8/7 1,25 1,25 1,25 4/3 4/3 4/3 4/3 1,5 4/3
ρ̄(G) 1 1 1 1 1 1 1 1 1,5 1

Table 1. Values of ρ(G) for the selected graphs

In addition to the results presented in Table 1, we note that ρ̄(P6) = 1. A comparison
of results presented in Table 1 shows that prime-version Π̄(G) is easier than the original
problem Π(G). In particular, ρ̄(G) = 1 means that for any instance I of Π̄(G) we have
OPT = LB(G). This observation implies a simple exact linear time algorithm for the
corresponding problem. Replace all the jobs of the same type by an aggregated job.
Set the processing time of the aggregated job equal to the sum of processing times of
original jobs. A new instance has a constant number of jobs. We can enumerate all active
schedules and choose the best one. In the same way, we obtain a ρ(G)-approximation
algorithms for the corresponding problems in the case ρ(G) > 1.

A naive enumeration procedure can be improved by using the search tree T con-
structed by the branch and bound algorithm when this algorithm calculates ρ(G). Let
h be the height of the search tree T. It is sufficient to consider at most h schedules
chosen for branching in each vertex in a path from the root v0 to some leaf of T.
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