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Abstract. Intension graphs are introduced as an intensional variant of
Wille’s concept graphs. Windowed intension graphs are then introduced
as formalizations of conjunctive queries. Realizations describe pattern
matching over power context families, which have been introduced with
concept graphs as representations of relational data using a sequence
of formal contexts. Using windowed intension graphs as patterns within
pattern structures, we can define concept lattices, where power context
families take the role of formal contexts. Relational Context Families,
used in Relational Concept Analysis (RCA), correspond to power context
families using sorts and only binary relations, and the lattices generated
by the RCA algorithm (using wide scaling) can be represented using
rooted trees as intents, which are introduced as a subclass of windowed
intension graphs. Consequently, projections of the previously introduced
pattern structure can be used as an alternative to the RCA algorithm.
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1 Introduction

In the terminology of philosophers and linguists, a concept has an extension
and an intension. We may say that ”extension” refers to the things belonging
to a concept, whereas “intension” refers to the meaning of a concept. Formal
Concept Analysis [6] (FCA) provides a mathematical formalization of concepts
which represents the extension by a set of formal objects (the extent) and the
intension by a set of formal attributes (the intent). The notion of intension is
however a vague one and different representations can be thought of.

Many real-world concepts describe objects in terms of their relations to other
objects (e.g. visitor, grandfather, ticket), and this may suggest a different repre-
sentation of intensions using graphs. It turns out that conjunctive queries offer
a rich notational framework to support this kind of representation. In [8], con-
cepts have been defined in terms of family relations, and windowed relational
structures have been used to represent conjunctive queries. The qualifier “win-
dowed” is used here to express that a number of designated elements have been
chosen from the underlying structure. These are the elements being described.
The current paper introduces intension graphs (IGs), which are attribute-labeled
graphs, and uses them in place of relational structures. In contrast to relational



structures, IGs formally represent information in the same way it is drawn (i.e.
centered around objects) and are supposed to be more intuitive to work with.
Conjunctive queries are accordingly represented by windowed IGs. Section 2 de-
fines IGs, describes pattern matching over power context families [12] (PCFs)
and shows that IGs can be represented by PCFs and vice versa.

Sections 3 and 4 define the sum and product of IGs and windowed IGs,
respectively. In both cases, sum and product realize the supremum and infimum
operations. These operations are called sum and product because they realize
certain universal properties (coproduct and product) defined in category theory.
Also, Sect. 4 briefly states connections of windowed IGs to primitive positive
formulas and relational algebra operations, which are known to exist because
windowed IGs model conjunctive queries.

The concept lattice depends not only on the PCF (which plays the role of a
formal context), but also depends on the chosen formalization of intension. Sec-
tion 5.1 states the pattern structure (see [5]) for building the lattice of windowed
IGs over a PCF, which contains the formalization of intension in its definition.
From there, any general algorithm for pattern structures can be used to build
the lattice. Section 5.2 provides an example and illustrations.

Finally, Sect. 6.1 shows that the Relational Concept Analysis (RCA) algo-
rithm, used with the wide scaling operator, generates lattices of rooted trees,
which form a subclass of conjunctive queries. It is shown that essentially the
same lattices can be generated from projections [5] of the pattern structure of
Sect. 5.1.

2 Intension Graphs and Power Context Families

2.1 Intension Graphs

A simple relational graph is a pair (V,E) consisting of a set V of vertices and a
set E ⊆

⋃
k≥1 V

k of edges. The edges in E(k) := E ∩ V k are said to have arity
k (k ≥ 1).

Definition 1. An intension graph over a family (Mk)k∈N of attribute sets is a
triple (V,E, κ), where (V,E) is a simple relational graph and κ is a map defined
on V ∪ E with κ(V ) ⊆ P(M0) and κ(E(k)) ⊆ P(Mk) \ {∅} for k ≥ 1.

A homomorphism ϕ : (VG, EG, κG)→ (VH , EH , κH) of intension graphs over
the same family M of intents is a map ϕ : VG → VH , extended to V k, k ≥ 1, by
setting

ϕ((v1, . . . , vk)) := (ϕ(v1), . . . , ϕ(vk)), (1)

which preserves edges and intents, i.e.

ϕ(e) ∈ EH , (2)

κG(u) ⊆ κH(ϕ(u)) (3)

must hold for all e ∈ EG and u ∈ VG ∪ EG. We define IGM as the category of
intension graphs over M .



2.2 Power Context Families

Definition 2. A power context family is a sequence (Ki)i∈N of formal contexts
Ki =: (Gi,Mi, Ii) such that Gi ⊆ (G0)i for all i ≥ 1. We say that (Ki)i∈N is
a power context family over the family (Mi)i∈N of attribute sets if, in addition,
gIk 6= ∅ for all g ∈ Gk, k ≥ 1.

A homomorphism ϕ : ((Gi,Mi, Ii))i∈N → ((Hi,Mi, Ji))i∈N of power context
families over the same family (Mi)i∈N of attribute sets is a map ϕ : G0 → H0,
extended to (G0)k, k ≥ 1, by setting

ϕ((g1, . . . , gk)) := (ϕ(g1), . . . , ϕ(gk)), (4)

which preserves incidences, i.e.

gIkm⇒ ϕ(g)Jkm (5)

must hold for all k ∈ N, g ∈ Gk and m ∈Mk. We define PCFM as the category
of power context families over M .

2.3 Isofunctors

Let (Mi)i∈N =: M be a family of attribute sets. We may represent a power
context family (Ki)i∈I in PCFM by an intension graph

igM ((K)i∈N) := (G0,
⋃
k≥1

Gk, {u 7→ uIk | (k, u) ∈
⋃
k∈N
{k} ×Gk}). (6)

in IGM . Conversely, each intension graph G in IGM is represented in PCFM
by the power context family

pcfM (G) := ((E
(k)
G ,Mk,3(k)G ))k∈N,

where u 3(k)G m :⇔ m ∈ κ(u).
(7)

It is easy to see that pcfM (igM (~K)) = ~K and igM (pcfM (G)) = G for all ~K ∈
PCFM and G ∈ IGM . Moreover, every homomorphism ϕ : G→ H of intension
graphs is also a homomorphism ϕ : pcfM (G) → pcfM (H) and vice versa. This
means that the categories IGM and PCFM are essentially the same.

2.4 Interpretations

Power context families can be used to model factual knowledge about objects
and their relations to each other. The objects are collected in a set G0, and the
formal contexts (G0,M0, I0) and (G1,M1, I1) describe the objects by attributes.
Finally, the contexts (Gk,Mk, Ik), k ≥ 2, describe how the objects are related
to each other.

Intension graphs can be used to model patterns. The nodes describe some
unspecified objects, and the map κ describes them in terms of attributes. An
edge is used to indicate that the objects involved are related in some way, and
the map κ specifies the relation(s) between the objects. A pattern match is
formalized by the following definition:



Definition 3. Let G ∈ IGM and ~K ∈ PCFM . A realization ρ : G → ~K is a

map ρ : VG → G0 with ρ(u) ∈ κ(u)Ik for all u ∈ E(k)
G and k ∈ N.

Since IGM and PCFM are isomorphic, we may represent patterns and data in
the same category. A realization then becomes a homomorphism:

Proposition 1. Let G ∈ IGM and ~K =: (Gi,Mi, Ii)i∈I ∈ PCFM . A map

ϕ : VG → G0 is a realization ϕ : G→ ~K iff it is a homomorphism ϕ : G→ ig(~K).

Some remarks are in order why intension graphs and power context families were
defined the way they are. First, if edge labels of intension graphs were permitted,
we could create more specific patterns by adding edges with empty labels. This
could be justified by saying that an edge with an empty label means that the
incident vertices are related in some unspecified way. However, it seems better
to model this explicitly by adding “is related” attributes. Adding empty rows
to a context (Gk,Mk, Ik), k ≥ 1, of a power context family ~K, on the other
hand, results in an equivalent power context family (as per the homomorphism
definition). To make PCFM and IGM isomorphic, empty rows are not permitted
in contexts (Gk,Mk, Ik), k ≥ 1.

3 Graph Operations and Graph Construction

The main result of Sections 3 and 4 is the definition of the product and the
sum for IGs and windowed IGs. These operations define infima and suprema in
the respective morphism preorders. Moreover, in category theoretical terms, the
stated operations realize (categorical) products and coproducts[1]. This means
that, given graphs G1 and G2, there are morphisms π1 : G1 × G2 → G1, π2 :
G1 ×G2 → G2 such that for any other graph X and morphisms ϕ1 : X → G1,
ϕ2 : X → G2 there is a unique ϕ : X → G1×G2 with ϕ1 = π1◦ϕ and ϕ2 = π2◦ϕ
(Fig. 1), and likewise for the coproduct (Fig. 2). Infinite (co-)products are defined
accordingly. Every product is an infimum in the morphism preorder, but the
opposite does not hold: products are unique up to isomorphism[1], but infima are
only unique up to hom-equivalence (i.e. equivalence in the morphism preorder).
The stronger product property is not needed in this paper, but when looking
for infima of patterns compared by morphisms, one may check for categorical
products as they can often be derived from well-known products. It may seem
unfortunate that in Fig. 1 the infimum G1 ×G2 is drawn above G1 and G2, but
this arrangement seems to be prevalent in drawings of categorical products and
is also in line with how patterns are arranged in the concept lattice.
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3.1 Graph Operations

The product of a family ((Vi, Ei, κi))i∈I of intension graphs is the intension graph

×i∈I(Vi, Ei, κi) =: (V,E, κ) given by

V :=×
i∈I

Vi, (8)

(v1, . . . , vk) ∈ E(k) :⇔ ((v1(i), . . . , vk(i)))i∈I ∈×
i∈I

E
(k)
i

and
⋂
i∈I

κi((v1(i), . . . , vk(i))) 6= ∅,
(9)

κ(u) :=
⋂
i∈I

κi(u) (10)

for u ∈ V ∪ E and v1, . . . , vk ∈ V , k ≥ 1. Given a set X, an intension graph G
and a bijection ϕ : VG → X, we call the graph

ϕ ◦G := (ϕ ◦ VG, ϕ ◦ EG, κG ◦ ϕ−1) (11)

a renaming of G (cf. (1)). This amounts to a renaming of graph nodes. The
union of graphs G and H with VG ∩ VH 6= ∅ is the graph

G1 ∪G2 := (VG1 ∪ VG2 , EG1 ∪ EG2 , κG1 ∪ κG2), (12)

and the disjoint union or sum of two arbitrary graphs G1 and G2 is given by

G1 tG2 := (ϕ1 ◦G1) ∪ (ϕ2 ◦G2), (13)

where ϕi(v) := (i, v) for i ∈ {1, 2} and v ∈ VGi . The disjoint union is the
coproduct in IGM . Now let G ∈ IGM and θ ⊆ VG×VG an equivalence relation.
The quotient of G w.r.t. θ is the graph

G \ θ := (VG \ θ,EG \ θ, κθ), (14)

where E \ θ := {([v1], . . . , [vn]) | (v1, . . . , vn) ∈ EG}, (15)

and κθ([u]θ) :=
⋃
xθu

κ(x) (16)



for u ∈ VG. The operation can be visualized as a merging of nodes within the
same graph. For an arbitrary relation θ ⊆ VG×VG, we define V \θ := V \θ̄, where
θ̄ is the smallest equivalence relation with θ ⊆ θ̄. Finally, for graphs G,H ∈ IGM

and θ ⊆ VG × VH , we define the amalgam

G1 +
θ
G2 := (G1 tG2) \ {(ϕ1(x), ϕ2(y)) | (x, y) ∈ θ}, (17)

where ϕ1 and ϕ2 are given as in (13). The amalgam can be visualized as a
merging of two graphs by their nodes.

3.2 Graph Construction

An intension graph G ∈ IGM with |VG| < ∞ is called finite. For attribute sets
B ⊆M0 and R ⊆Mk,k ≥ 1, we define the following structurally minimal graphs.

EB(x) := ({x}, ∅, {x 7→ B}) (18)

SR(x1, . . . , xn) := ({x1, . . . , xn}, {(x1, . . . , xn)}, κR),

where κR := {(x1, . . . , xn) 7→ R, x1 7→ ∅, . . . , xn 7→ ∅})
(19)

Every finite G ∈ IGM can be constructed from these graphs in a finite number
of steps, using the amalgam and renaming operations.

4 Windowed Intension Graphs

Definition 4. A windowed intension graph is a pair (α,G) consisting of an
intension graph G and a partial map α : N 9 VG.

A homomorphism ϕ : (α1, G1) → (α2, G2) of windowed intension graphs is a
homomorphism ϕ : G1 → G2 with ϕ ◦ α1 ≤ α2.

While a pattern match for an intension graph G in a power context family
~K has been defined by a realization ρ : G→ ~K, the set

(α,G)� := {α ◦ ϕ | ϕ : G→ ~K} (20)

defines the set of all pattern matches for the windowed intension graph (α,G).
A finite windowed intension graph corresponds to a primitive positive formula
(pp formula), i.e. a predicate logical formula which is built from atoms using
conjunction (∧) and existence quantification (∃) only (atoms may contain the
equals sign). For finite graphs, the (·)� operation can be inductively defined,
starting with

(id{0}, EB(0))� = BI0 , B ⊆M0, (21)

(id{1,...,n},SR(1, . . . , n))� = RIn , R ⊆Mk, k ≥ 1, (22)

which correspond to the select operation on databases, and proceeding with
similar rules for the join and project operations.



When viewing a windowed intension graph (α,G) as a pp formula, the set
α−1(VG) corresponds to the free variables, and the set VG \α(N) corresponds to
the existentially quantified variables.

Let us denote by CSn the set of all primitive positive formulas in the free
variables x0, . . . , xn−1 for a given signature S. The lattice of all n-ary relations
which can be defined in a given S-structure by formulas in CSn can be defined as
the concept lattice of the context ((G0)n, CSn , |=), where |= is the satisfaction re-
lation. In Sect. 5.1, an equivalent construction is done using windowed intension
graphs as patterns over a power context family.

4.1 Product and Sum

The product of a family of windowed intension graphs is given by

×
i∈I

(αi, Gi) := (〈~α〉,×
i∈I

Gi), (23)

〈~α〉(n) :=

{
(αi)i∈I if αi(n) is defined for all i ∈ I,
undefined otherwise

. (24)

The sum of windowed intension graphs is given by

(α1, G1) + (α2, G2) := ([α1, α2], G1 +
θ(α1,α2)

G2), (25)

where

θ(α1,α2) := {(α1(k), α2(k)) | k ∈ N ∧ α1(k) defined ∧ α2(k) defined }, (26)

[α1, α2](k) :=


[(1, α1(k))]θ(α1,α2)

if α1(k) is defined,

[(2, α2(k))]θ(α1,α2)
if α2(k) is defined,

undefined otherwise

. (27)

The sum can also be defined for arbitrary families (αi, Gi)i∈I , but this is even
more tedious and not needed in the following. We denote by IGX

M the category of
all windowed intension graphs where the first component has domain of definition
X.

5 Pattern Concepts

5.1 Concept Lattices of Power Context Families

Let ~K ∈ PCFM and n ∈ N. We want to create the lattice which has as its
extents all n-ary relations definable by windowed intension graphs (α,G), where
α is defined on n := {0, . . . , n − 1} (i.e., α is an n-tuple). The most specific
description for an n-tuple α is the windowed intension graph

δn~K(α) := (α,∆), (28)



where ∆ := ig(~K). We state the pattern structure as a triple ((G0)n, IGn
M , δ

n
~K),

where the second component is a category instead of, as usual, a semilattice. As
noted before, the infimum operation in the morphism preorder is realized - up
to pattern equivalence - by the categorical product (Sect. 4.1).

The Galois connection which arises from the pattern structure can be stated
as follows:

A� :=×
λ∈A

(λ,∆), (29)

(α,G)� := {λ ∈ (G0)n | ∃ϕ ϕ : (α,G)→ (λ,∆)}. (30)

The definitions in (20) and (30) coincide. The pattern concepts are the pairs
((α,G)�, (α,G)��) for G ∈ IGM and α ∈ (G0)n. The same concepts arise as the
pairs (A��, A���) for A ⊆ (G0)n; the patterns A� and A��� are hom-equivalent,
but generally not identical.

5.2 Example

We define a family M := ({a, b}, ∅, {r, s}, ∅, . . . ) of attribute sets. Figure 4 shows

a power context family ~K over M. The intension graph ig(~K) is shown in Fig. 5.
It has three components, which are individually listed in Fig. 6 as components
C1, C2 and C3.

Let us construct the concept lattice for patterns in IG1
M (Fig. 7). First

of all, a pattern in IG1
M can be stated as (x,G) with x ∈ VG (by writing

(α(0), G) instead of (α,G)), and we may alternatively state this as (x,C), where
C is the component of x. The object intents, given by δ1~K, are the patterns

(1, C1),(2, C3),(3, C3),(4, C3),(5, C2) and (6, C2). In Fig. 7, they can be found di-
rectly on top of the pattern ((), C0) for the bottom concept, which is generated
by the empty product. The product C1 × C3 has a single component, which is
denoted C5 (Fig. 6). This yields (1, C1)× (j, C3) = ((1, j), C5) for j = 2, 3, 4. As
we can see, when we multiply intension graphs, several products of windowed
intension graphs are obtained at once. In this case, all three products are hom-
equivalent, and yield the topmost circle pattern in Fig.7.

Let us generate all 2-generated concepts in lectic order. The next concept
would be ({1, 5}��, {1, 5}�) up to hom-equivalence. Formally, Sect. 5.1 states
the intent as {1, 5}���, but this is not practically relevant. The product C1×C2

provides {1, 5}� and {1, 6}�, which are different patterns (the co-atoms in Fig. 7)
with the same underlying component C7. To obtain {2, 3}�, we compute C3×C3,
which is disconnected (C3×C3

∼= C3tC4tC4). The new component C4 yields the
three remaining circle patterns in Fig. 7. Computing {2, 5}� leads to C3 ×C2 =
C6 t C8, which gives six new pattern concepts, and finally {5, 6}� (the only
missing combination) yields the top concept. There are two more patterns, which
are 3-generated and have undelying component C10.

All patterns produced were minimal (i.e. they have no proper hom-equivalent
subpattern). The reason for this is that the nodes in the generating patterns
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have indegree and outdegree bounded by 1. Otherwise it may happen that a
component contains two concepts (i.e. nodes), say X and Y , such that X is
necessary to describe Y , but a minimal description of Y does not contain X,
which has to be taken care of during lattice construction. Another point is that
hom-equivalent patterns need to be discovered, which generally requires homo-
morphism checks. The inherent complexity can be avoided if patterns are re-
stricted to trees (see Sect.6). An implementation of lattice construction, which
currently uses a variant of Ganter’s NextConcept algorithm [6], is available at
https://github.com/koetters/cgnav.

6 Relational Concept Analysis and Tree Patterns

6.1 Relational Concept Analysis

Relational Concept Analysis uses relational scaling to express relations between
objects by means of formal attributes. A number of scaling operators are defined,
but only the wide scaling operator is covered here. The RCA algorithm builds a
lattice from a Relational Context Family (RCF), which can be seen as a many-
sorted PCF with binary relations only. We only deal with the one-sorted case,
because the general case is implied. In this case, an RCF can be likened to a PCF
with two contexts K0 and K2. The RCA algorithm definies an iterative procedure
which incrementally adds new attributes to K0. The sequence of contexts can
be described as follows:

K(0) := K0, (31)

K(i+1) := K0 | (G0,M2 × B(K(i)), J (i+1)), (32)

where gJ (i+1)(r, C) :⇔ ∃h : h ∈ ext(C) ∧ (g, h) ∈ r. (33)

Consider the PCF from Fig. 2. To obtain K(1), we first have to generate B(K(0)).
The concept lattice consists of the four black nodes shown in the miniature
lattice in Fig. 7. Relational scaling produces eight new attributes. Fig.8 shows
the context K(1). The left tree in Fig. 9 represents the intent of the object 2 in
K(1) by a tree pattern. The neighbors of the black node are supposed to represent
concepts of B(K(0)), and the full tree pattern is obtained by substituting these
with their pattern intents (this adds two occurrences of a). The right tree in
Fig. 9 represents a minimal hom-equivalent subpattern. The lattice B(K(1)) can
be generated by intersecting all object intents (as attribute sets) or alternatively,
by computing the tree products. The lattice B(K(2)) consists of the gray nodes
in addition to the black nodes (Fig. 7). The context K(3) is a fixed point of the
RCA algorithm, the final lattice additionally contains the dotted nodes. The
white nodes are not discovered by the RCA algorithm (although five of them
can be discovered by adding r−1 and s−1 to K2). The tree intents of the objects

in K(i) can be obtained directly from igM (~κ) using the splice(i) operation from
Sect. 6.3. It is also shown that splicei is a pattern projection(cf.[5]), which enables
the use of pattern structure algorithms for RCA. The rest of the section proves
the relevant claims.
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6.2 Rooted Trees

Definition 5. A rooted tree is a windowed intension graph which can be con-
structed by the following rules:

(RT1) For a given set B ⊆ M0 of attributes, the windowed intension graph
(0, EB(0)) is a rooted tree with

depth((0, EB(0))) := 0. (34)

(RT2) For a given set B ⊆ M0 of attributes, an index set I 6= ∅, a family
(Ri)i∈I of attribute sets Ri ⊆M2, Ri 6= ∅, and a family (xi, Ti)i∈I of rooted
trees such that supi∈I depth((xi, Ti)) <∞, the windowed intension graph

(x, T ) := (0, EB(0)) +
∑
i∈I

(0,SRi(0, 1) +
{(1,xi)}

Ti) (35)

is a rooted tree with

depth((x, T )) := 1 + max
i∈I

depth((xi, Ti)). (36)

A rooted tree is called thin if it can be constructed by rules (RT1) and (RT2′),
where (RT2′) is obtained from (RT2) by adding the additional requirement that
|Ri| = 1 for all i ∈ I.

We denote by ItM,n the subcategory of IGM that consists of the thin rooted
trees of depth at most n.

Proposition 2. Let n ∈ N. The concept extents of B(K(n)) are precisely the
sets (x, T )� described by thin rooted trees (x, T ) of depth ≤ n.

Proof. This is proved by induction over n ∈ N. For n = 0, the claim follows
from (21). If T is a thin rooted tree with depth(T ) = n + 1, there is a family
(xi, Ti)i∈I of thin rooted trees of depth ≤ n and a family (ri)i∈I of attributes
in M2, such that (x, T ) = (0, EB(0)) +

∑
i∈I(0,S{ri}(0, 1) +

{(1,xi)}
Ti). By the



induction hypothesis, there exists a family (Ci)i∈I of concepts Ci ∈ B(K(n))
with (xi, Ti)

� = ext(Ci). Then

(x, T )� =((0, EB(0)) +
∑
i∈I

(0,S{ri}(0, 1) +
{(1,xi)}

Ti))
� (37)

=B′ ∩
⋂
i∈I

r−1i ((xi, Ti)
�) (38)

=B′ ∩
⋂
i∈I

r−1i (ext(Ci)) (39)

=(B ∪ {(ri, Ci) | i ∈ I})′. (40)

This shows that (x, T �) is a concept extent in B(K(n+1)). Conversely, a concept
extent in B(K(n+1)) is defined by an attribute set as in (40), and the induction
hypothesis is used in (39) to obtain the family (xi, Ti)i∈I for given (Ci)i∈I . ut

6.3 Graph Splicing

A graph G ∈ IGM can be unfolded into a (possibly infinite) tree, starting at any
given vertex which becomes the root of the tree. It is easy to see that, among
all trees more general than G, the unfolding is the most specific one. In other
words, the unfolding is a kernel operation (the dual of a closure operation).
This implies that an

∧
-sublattice is obtained if patterns are restricted to trees.

A similar operation constructs a thin rooted tree from a graph: In addition to
unfolding, every edge carrying multiple relation attributes is spliced into several
edges, each carrying exactly one of the relation attributes. The operation is
formalized by the following inductive definition, where G ∈ IGM and x ∈ VG:

splice(0)(x,G) := (x, Eκ(x)(x)), (41)

splice(i+1)(x,G) := (x, Eκ(x)(x)) +
∑

(x,y)I2r

(x,S{r}(x, y) +
{(y,ỹ)}

T (i)
y ),

where (ỹ, T (i)
y ) := splice(i)(y,G)

(42)

The following proposition states, in category theoretical terms, that the splice
operation maps each (x,G) ∈ IG1

M to its coreflection in ItM (cf. Fig. 3). As can
be seem from Fig. 3, this implies that splicing is a kernel operation (or pattern
projection). This means that the pattern structure (G0, ItM , splice ◦δ1~K) creates
the concepts of the RCA algorithm.

Proposition 3. For each (x,G) ∈ IG1
M , there exists a morphism ϕ(x,G) :

splice((x,G)) → (x,G) such that for every (y, T ) ∈ ItM and ϕ : (y, T ) →
(x,G) there exists a unique morphism ψ : (y, T ) → splice((x,G)) such that
ϕ = ϕ(x,G) ◦ ψ.

Proof sketch: We inductively prove a unique morphism ψ(i) : splice(i)((y, T ))→
splice((x,G)). In the induction step, the image of each neighbor of the root node



is uniquely determined. The union of the ψ := ψ(i) is well-defined (because of the
uniqueness). Since splice((x, T )) = (x, T ) holds, ϕ is the required morphism. ut

From a given graph G ∈ IG1
M , we can determine for each x ∈ VG the extent

ext∆(x) in splice((x,G)) without actually splicing the graph. Let us denote this
as the tree extent tex∆(x) of x in G. The tree extent can be computed as follows:

tex
(0)
∆ (x) := κG(x)Ik for x ∈ E(k)

G , (43)

tex
(i+1)
∆ (x) := tex

(0)
∆ (x) ∩

⋂
(x,y)I2r

r−1(tex
(i)
∆ (y)). (44)

This can be proven by inductively showing splice(i)((x,G))� = tex
(i)
∆ (x).

7 Related Work

Power context families and concept graphs have been introduced by Rudolf Wille
in [11]. Concept graphs have been presented as a mathematical formalization of
Conceptual Graphs [10]. Different kinds of concept graphs are presented in [12]
but, to the knowledge of the author, abstract concept graphs mentioned in in-
troductory paper [11] are the only kind of concept graphs defined without a
realization. Abstract concept graphs use symbols as node labels rather than sets
of attributes.

In [8], windowed structures have been introduced as triples (X, ν,G), and a
Galois connection into a complete lattice of data tables (where the infimum is re-
alized by the join for database tables) has been presented. A follow-up paper [9]
addresses the connection to logic, features sorts, uses a “relational structure with
concept labels” hybrid and shows the connection to pattern structures by rep-
resenting extensions as sets of partial interpretations. Pattern structures were
introduced in [5], and the use of Conceptual Graphs as patterns is suggested
in there. The representation of conjunctive queries (and thus pp formulas) by
graphs, and of entailment by graph homomorphism, is credited to [2]. In [3],
these relationships are stated for λ-BGs, which are Basic Conceptual Graphs
with distinguished concepts given by a mapping λ, and this representation di-
rectly corresponds to the windowed abstract concept graphs (and their homo-
morphisms) in the paper at hand. Moreover, in [3, Chapter 8], the categorical
product is used to describe the least generalization of Conceptual Graphs. The
Projected Graph Patterns (PGPs) in [4], their inclusion and intersection, cor-
responds to λ-BGs and windowed abstract concept graphs and their respective
notions of homomorphism and product. In [4], as in [8], concept lattices are
generated, with intents realized using the respective formalizations.

Relational Context Families and the construction algorithm are described
in [7], and the RCA algorithm has been described for different kinds of inter-
object relations which are not covered here.



8 Conclusion

The paper has introduced windowed intension graphs as a formalization of con-
junctive queries. Intension graphs correspond to concept graphs without the
realization component. Some notation has been introduced which establishes
connections to logic and database theory. The lattices generated by the RCA
algorithm have been characterized as

∧
-sublattices of conjunctive queries. The

results concerning rooted trees still have to be implemented and compared with
the RCA algorithm. While a bound for the maximum number of iterations of
the RCA algorithm can be given by |G|, the pattern structures algorithms might
benefit from a better bound computed in advance from the context family.
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