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Abstract. While abductive reasoning provides an intuitive ap-
proach to diagnosis, its computational complexity remains an obsta-
cle. Even though certain model representations are tractable, com-
puting solutions for instances of reasonable size and complexity per-
sists to pose a challenge. Hence, the discovery of efficient methods
to derive abductive explanations presents itself as appealing research
area. In this paper, we investigate the structural properties inherent
to formalizations suitable for abductive failure localization. Based
on the features extracted we construct a meta-approach exploiting a
machine learning classifier to predict the abductive reasoning tech-
nique yielding the “best” performance on a specific diagnosis sce-
nario. To assess whether the proposed attributes are in fact sufficient
for forecasting the appropriate abduction procedure and to evaluate
the efficiency of our algorithm selection in comparison to traditional
abductive reasoning approaches, we conducted an empirical experi-
ment. The results obtained indicate that the trained model is capable
of predicting the most efficient algorithm and further, we can show
that the meta-approach is capable of outperforming each single ab-
ductive reasoning method investigated.

1 Introduction
Being able to accurately identify the source of an unintended system
behavior is an essential objective in various application domains. Ab-
ductive reasoning appears to be a natural approach to diagnosis as it
infers consistent explanations from background knowledge and ob-
served symptoms based on the notion of entailment. Usually a set
of constraints, such as minimality, are placed on whether a solution
suffices as an abductive explanation or not.

While diagnosis is the most prevalent application area for abduc-
tive reasoning, abduction has been applied to a diverse set of prob-
lems such as planning [32], natural language processing [29], and
image interpretation [39]. A large body of literature has investigated
approaches to mechanizing abductive reasoning such as consequence
finding [22], proof-tree completion [23], set-covering [30], abductive
model-based diagnosis [3] or abductive logic programming [15, 6].

Within this paper we concentrate on two methods, namely par-
simonious set covering and abductive model-based diagnosis. The
set covering theory by Peng and Reggia [31] utilizes a causal asso-
ciative network recording the relations between disorders and their
manifestations. In their simple model, these cause and effect sets are
strictly disjoint. A diagnosis then is a set of disorders covering, i.e.
explaining, the set of observed symptoms. Later the approach has
been extended to incorporate probability theory and several refine-
ments to the basic theory have been proposed such as the improve-
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ment of models with additional knowledge or the inclusion of more
complex covering relations [1].

In model-based diagnosis a formalization of the system under con-
sideration is exploited to determine causes for anomalies [34]. While
the traditional approach utilizes a representation of the correct sys-
tem behavior and derives diagnoses via inconsistencies, the abductive
variant operates on a model describing the way faults affect measur-
able system variables. Through the notion of entailment abductive
model-based diagnosis reasons about causes of a set of observations
[3]. Considering a restricted problem space, simple set covering and
abductive model-based diagnosis are equivalent [23].

Even though there exist certain subsets of logics where abduction
is tractable, it generally is an NP-hard problem which grows expo-
nentially in the size of the model [27]. Hence, within this paper we
investigate algorithm selection as a means to efficiently compute ab-
ductive explanations in the context of diagnosis. First formalized by
Rice [35], algorithm selection aims at identifying the “best perform-
ing” approach for a specific problem instance. The basic building
blocks within this framework are a portfolio of algorithms to choose
from, empirical performance data of the algorithms on representative
problems and a set of features, which are used to get a notion of the
difficulty of a problem instance [13]. On grounds of the empirical
data and the feature vector, a predictor can be trained capable of de-
termining the most suitable approach for a distinct sample from the
problem space [17]. Machine learning has been identified as a fea-
sible approach to use as a prediction tool. Leyton-Brown et al. [20]
describe their portfolio approach to algorithm selection, where they
train an empirical hardness model for each algorithm within their
portfolio to forecast each approach’s computation time on the in-
stance and execute the one predicted as most efficient. Algorithm
selection has been applied very successfully in the domain of SAT
[38], graph coloring [26], or tree-decomposition [24].

In this paper, we restrict the problem space to propositional Horn
clause models which can be automatically generated from failure
assessments available in practice. These analyses hold information
on faults and their effects and thus are suitable knowledge sources
for abductive diagnosis. The resulting logical system descriptions
are characterized by certain structural properties, which we utilize
as features for the algorithm selection process. We extracted these
attributes for a collection of instances and evaluated several abduc-
tive diagnosis algorithms empirically on their computation time for
the entire sample set. On basis of the performance data and the fea-
tures we trained a machine learning classifier to forecast the algo-
rithm most suitable in regard to its runtime for a particular abduc-
tive diagnosis scenario. We embedded the selection process within
a meta-algorithm, which generates the structural metrics for a given
diagnosis problem, categorizes it on the previously trained classifier



and computes the diagnoses using the algorithm chosen by the pre-
dictor.

We organize our paper as follows. The next section provides a for-
mal introduction to abductive model-based diagnosis as well as the
parsimonious set covering approach. Further, we show that in their
simplest form they are equivalent. Section 3 discusses the type of
logical formalizations we examine and describes the structural char-
acteristics forming our features for the algorithm selection. Subse-
quently, we discuss the meta-approach in more detail and in Section
4.3 we empirically evaluate it in comparison to the algorithms in our
portfolio. Lastly we summarize the paper and provide an outlook to
future work.

2 Abductive Diagnosis
Within this section we consider two abductive diagnosis approaches,
namely abductive model-based diagnosis [3] operating on propo-
sitional Horn clauses and the simple set covering approach [31].
Specifically, we show their equivalence and describe the correspond-
ing elements within each method.

2.1 Model-Based Diagnosis
As model-based diagnosis requires a formal description of the sys-
tem, its abductive variant utilizes a representation of the connections
between failures and their manifestations. Based on the information
available, the task is to search for a set of consistent causes which to-
gether with the background theory logically entail a set of observed
fault indicator. Since abduction is a hard problem, research has fo-
cused on subsets of logics which allow to compute explanations in
polynomial time [27]. An important restriction on the underlying
formulas is the Horn property as for this fragment abduction is still
tractable. Within the context of diagnosis a further syntactical restric-
tion often imposed is a definite Horn theory since it often suffices to
describe causal relations [7].

Therefore, we concentrate on propositional definite Horn descrip-
tions and define in a similar manner as Friedrich et al. [9] a knowl-
edge base.

Definition 1 (Knowledge base (KB)) A knowledge base (KB) is a
tuple (A,Hyp,Th) where A denotes the set of propositional variables,
Hyp⊆ A the set of hypotheses, and Th a set of Horn clause sentences
over A.

The set of hypotheses Hyp comprises the propositional variables al-
lowed to form a diagnosis, while the theory describes the relations
between the variables. In this context, we further specify the propo-
sitional variables not constituting a hypothesis, i.e. {A \ Hyp}, as
effects or symptoms. We will refer to this set of variables as Σ within
this paper. Since we aim at identifying root causes for failure mani-
festations, an abduction problem considers a knowledge baseKB as
well as a set of symptoms to explain. We therefore define a Proposi-
tional Horn Clause Abduction Problem (PHCAP) as follows:

Definition 2 (Propositional Horn Clause Abduction Problem
(PHCAP)) Given a knowledge base (A,Hyp,Th) and a set of observa-
tions Obs ⊆ A then the tuple (A,Hyp,Th,Obs) forms a Propositional
Horn Clause Abduction Problem (PHCAP).

Definition 3 (Diagnosis; Solution of a PHCAP) Given a PHCAP
(A,Hyp,Th,Obs). A set ∆ ⊆ Hyp is a solution if and only if ∆ ∪ Th
|= Obs and ∆ ∪ Th 6|= ⊥. A solution ∆ is parsimonious or minimal
if and only if no set ∆′ ⊂∆ is a solution.

A solution to a PHCAP is an abductive diagnosis, as it provides hy-
potheses consistently explaining the occurrence of a set of observa-
tions. As in practice minimal solutions are preferred, we require the
diagnoses to be subset minimal.
Example 1: Consider the following KB:

A = {h1, h2, h3, o1, o2, o3}, Hyp = {h1, h2, h3},

Th =
{
h1 → o1, h2 → o1, h2 → o2, h3 → o2, h3 → o3

}
Assume we can observe o1 and o3, i.e. Obs = {o1, o3}. The so-
lutions to the PHCAP, i.e. the minimal abductive diagnoses, are
∆1 = {h1, h3} and ∆2 = {h2, h3}.

2.2 Parsimonious Set Covering
Abduction by parsimonious set covering is based in its simplest form
on an associative network encompassing the causal links between
possible disorders and their manifestations [31]. A diagnosis prob-
lem is a 4-tuple P =< D,M,C,M+ >, where D is the set of
disorders, M comprises the manifestations, C defines the causal
connections, and M+ represents the current set of symptoms ob-
served. The knowledge about the causal relations is defined by two
sets: effects(di) and causes(mj). For each disorder di we can de-
fine effects(di) = {mj | < di,mj >∈ C} as the set of manifesta-
tions cause by the disorder. Similarly, the set causes(mj) = {di| <
di,mj >∈ C} holds the disorders which directly trigger manifesta-
tionmj [31]. Thus, for any subset of disordersDI , we can determine
the objects directly caused by it as

effects(DI) =
⋃

di∈DI

effects(di)

Along similar lines, we can observe that

causes(MJ) =
⋃

mj∈MJ

causes(mj)

As mentioned within this approach abductive explanations are de-
fined as the causes covering the observed symptoms. A set of dis-
orders DI is said to cover a set of manifestations MJ ⊆ M if
MJ ⊆ effects(DI), i.e. the former causally infers the latter. While
minimality is not a necessary condition for a cover in the original
definition of Peng and Reggia [31], we introduce the further require-
ment that the cover is subset minimal.

Definition 4 (Cover) A set DI ⊆ D is said to cover MJ ⊆ M
if MJ ⊆ effects(DI) and there exists no D′I ⊂ DI with MJ ⊆
effects(D′I).

Thus, we can define a solution to a set covering problem as a subset
DI ⊆ D covering M+.

Definition 5 (Set Cover Diagnosis) Given a diagnosis problem P .
A set ∆ ⊆ D is said to be a diagnosis iff ∆ covers M+.

In regard to the logic-based definitions discussed for model-based
diagnosis, the disorders refer to the set Hyp in the PHCAP frame-
work. Their manifestations constitute the effects Σ,M+ corresponds
to Obs, and the network represents the domain theory. A causal re-
lation < di,mj > is recorded in C whenever there is a logical im-
plication of the form di → mj , where di ∈ Hyp and mj ∈ Σ
within the theory Th. Thus, it is apparent that the simple set cover-
ing framework is equivalent to logic-based abduction with a theory



restricted to definite Horn clauses [23]. As both methods generate the
explanatory causes based on the relationships between disorders and
effects, they compute abductive explanations. That is a set covering
diagnosis, as defined previously, corresponds to a minimal diagnosis
in the PHCAP framework.
Example 1 (cont): Considering our previous example, the diagnosis
problem P can be reformalized in set covering:

D = {h1, h2, h3}, M = {o1, o2, o3},M+ = {o1, o3},

C =

{
< h1, o1 >,< h2, o1 >,

< h2, o2 >,< h3, o2 >,< h3, o3 >

}
We can obtain the set covering diagnoses by determining

the disorder sets DI where effects(DI) cover M+, which
are effects({h1, h3}) = {o1, o2, o3} and effects({h2, h3}) =
{o1, o2, o3}. Hence, the diagnoses are ∆1 = {h1, h3} and ∆2 =
{h2, h3}.

The equivalence between set covering and the hitting set prob-
lem has been established [16], thus we can exploit the notion of
hitting sets in order to define a diagnosis within the parsimonious
set covering theory. In particular, we stated previously that a cover
implies a causal dependency between disorders and manifestations
and can be expressed through the effects relation. Along similar lines
causes(mj) comprises information on all disorders responsible for
mj . Hence, by computing the hitting set of causes(mj) for a sin-
gle manifestation, we derive a disjunction of all disorders possibly
leading to mj , i.e. each disorder constitutes a diagnosis. For multi-
ple observations, i.e. m1,m2, . . . ,mn ∈ M+, the hitting sets of all
causes-sets of the current manifestations form the diagnoses. This
is apparent since in order to represent a solution one disorder ex-
plaining each observation has to be present within each diagnosis.
To impose the parsimonious criteria, we restrict solutions to subset
minimal hitting sets [30].

Definition 6 (Abductive Hitting Set Diagnosis) Given a diagnosis
problem P . A set ∆ ⊆ D is said to be a minimal diagnosis iff ∆ is a
minimal hitting set of S, where ∀mj ∈M+ : causes(mj) ∈ S.

Example 1 (cont): The causes sets for the current manifestations are
causes(o1) = {h1, h2} and causes(o3) = {h3}, thus causes(o1) ∈
S and causes(o3) ∈ S. The minimal hitting set of S correspond to
∆1 = {h1, h3} and ∆2 = {h2, h3}.

3 Models
An essential issue in model-based diagnosis has been the construc-
tion of system descriptions suitable for identifying faults. Thus, nu-
merous techniques to automatically extract models have been pro-
posed with a recent method taking advantage of Failure Mode Effect
Analysis (FMEA) records [37]. This type of risk evaluation is be-
coming increasingly common and collects data on how faults on a
component level influence system variables [12]. Table 1 depicts a
simplified example of an FMEA where each row contains a compo-
nent, a possible fault of said component and its corresponding ef-
fects. Since it captures the causal associations between defects and
their consequences it provides information necessary for abductive
reasoning.

In the straightforward mapping presented by Wotawa [37] each
record of the FMEA is transformed into a set of Horn clause sen-
tences, where the component-fault mode pair implies an effect. These
formulas form the theory Th of a KB which we can utilize to
compute abductive diagnoses based on a set of fault indicators. The

Table 1: Example 2: FMEA taken from the wind turbine domain.

Component Fault Mode Effect
Fan Corrosion P turbine
Fan TMF T cabinet, P turbine

IGBT HCF T cabinet, T nacelle

set A then simply encompasses all proposition variables, while the
component-fault pairs compose Hyp.
Example 2: Transforming the FMEA given in Table 1 would lead to
the following KB:

Hyp =

{
mode(Fan,Corrosion),

mode(Fan, TMF ),mode(IGBT,HCF )

}

A =
{
mode(Fan,Corrosion), T cabinet, P turbine, . . .

}

Th =


mode(Fan,Corrosion)→ P turbine,
mode(Fan, TMF )→ P turbine,
mode(Fan, TMF )→ T cabinet,
mode(IGBT,HCF )→ T cabinet,
mode(IGBT,HCF )→ T nacelle


3.1 Diagnosing the Models

As is apparent from the example, the result of the mapping is a model
consisting of bijunctive definite Horn clauses. Thus, we can simply
apply either model-based or set covering abduction to compute di-
agnoses. However, since we would like to extend our approach to
different failure assessments in practice, we allow more expressive
formalizations, i.e. conjunctions of causes and disjunction of mani-
festations. In order to use these models within the PHCAP and simple
set covering approach, we currently compile them into define Horn
clauses. It is apparent that this increases the theory’s cardinality, re-
quires to reassemble the original hypotheses at the end of the diag-
nosis and to ensure that subset minimality is still present.

Now we explain how we can utilize the logical models obtained
on basis of the FMEAs to perform abductive reasoning within the set
cover approach. Given a model of this type we can easily represent
it as a hypergraph H = (V,E), where V is the set of vertices and E
constitutes the set of hyperedges. The nodes of the hypergraph repre-
sent the propositional variables, while the hyperedges are determined
by the theory. For each clause there exists a hyperedge containing all
propositional variables of said clause, i.e. ∀a ∈ A → a ∈ V and
∀c ∈ Th →

⋃
l∈c |l| ∈ E where || is a function mapping literals

to the underlying propositions ignoring negations, i.e., |¬p| = p and
|p| = p for all p ∈ A. In Figure 1 on the right hand side a hypergraph
representation of Example 1 is shown.

Following this representation we can assign a label to each vertex
within a hyperedge E, such that:

label(v) =

 {v} if v ∈ Hyp⋃
x∈E∧x6=v

label(x) otherwise

In case a vertex represents a manifestation, its label correspond to
its causes-set, as it holds the hypotheses responsible for the effect.
Thus, we can utilize the labels of the nodes representing the observa-
tions to compute the abductive diagnoses as hitting sets. Note that by
relying on this notion we could further handle intermediate effects,
which we do not discuss in more detail in this paper.
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Figure 1: DAG and hypergraph representation of Example 1. The
DAG shows shared hypotheses (left oval) and common effects (right
oval) for pairs of nodes.

3.2 Structural Metrics
As stated the models we are considering are bijunctive definite Horn
clauses. Thus, we can easily define their structural properties based
on various graph representations. In the simplest case the theory is
characterized as a directed acyclic graph (DAG) with two disjunctive
node sets, namely the propositional variables constituting the causes
and the effects, respectively. This representation is equivalent to the
associative network as described by Peng and Reggia [31] in their set
covering approach. Furthermore, it is apparent that by constructing
an undirected graph we receive a bipartite graph.

Considering the graph representations of the model, we can ex-
tract certain characteristics of their structure which we subsequently
use within the algorithm selection process. As abductive diagnosis
is possibly exponential in the number of causes to consider, the car-
dinality of Hyp is an intuitive measure complexity. In addition, we
collect the number of effects and connections within the theory.

3.2.1 Outdegree and Indegree

Based on the DAG, we can compute for each vertice representing a
hypothesis its outdegree, which specifies the number of manifesta-
tions affected by said cause. Similarly, we measure the indegree of
each effect, i.e. the number of hypotheses inferring the manifestation.
Considering the set covering framework we can define the degrees as
follows:

outdegree(hi) = |effects(hi)|

indegree(mj) = |causes(mj)|

In regard to Example 1 we can observe outdegree(h2) =
|effects(h2)| = 2 and indegree(o3) = |causes(o3)| = 1. Collected
over the entire model these measures provide an intuitive metric of
the basic magnitude of the theory and the connectedness of the graph.

3.2.2 Covering and Overlap

Several disorders may cover the same effect, i.e. a manifestation can
be explained by multiple causes. On basis of this we can define a
covering metric for each pair of hypotheses as the ratio between the
number of common effects and the total number of symptoms in-
duced by the hypotheses:

covering(hi, hj) =
|effects(hi) ∩ effects(hj)|
|effects(hi) ∪ effects(hj)|

Figure 1 depicts on the right hand side of the DAG the shared
observation o2 between h2 and h3 as a blue oval. Thus, we can see
that covering(h2, h3) = 1

3
.

In a similar manner, we define the overlap of two effects as their
common sources in relation to all their causes:

overlap(oi, oj) =
|causes(oi) ∩ causes(oj)|
|causes(oi) ∪ causes(oj)|

The overlap of o1 and o2 at h2 is shown as a red oval on the
left side of the DAG in Figure 1. In turn we can compute over-
lap(o1, o3) = 0. Peng and Reggia [31] define a pathognomonic ef-
fect as an observation with a single cause. Thus, whenever a pathog-
nomonic symptom is involved, we do not compute an overlap re-
lation. By collecting these measures for any pair of hypotheses or
effects, we can compute a value over the entire model.

3.2.3 Independent Diagnosis Subproblem

Whenever there exist several subproblems in our theory we refer to
them as independent diagnosis subproblems. If several subproblems
exist, the graphs representing the model are disconnected and each
independent diagnosis subproblem itself is a connected subgraph.
In case all effects are pathognomonic, then each cause-effect rela-
tion represents its own independent diagnosis subproblem and thus
we can observe that the model is orthogonal. Imagine the clause
h2 → o2 missing from the theory of Example 1. In this case we
would have two independent diagnosis subproblems, namely one in-
cluding h1, h2 and o1 and the other one consisting of h3, o2 and o3.
As an additional measure to the number of subproblems we further
compute the average size over all independent diagnosis subprob-
lems in case several exist.

3.2.4 Path Length

Another measure of connectedness within the model is the minimal
path length between any two nodes on the hypergraph. In particular,
we measure the length of the minimal path between nodes represent-
ing hypotheses, thus we compute the minimal number of hyperedges
to be traversed between each pair of hypothesis vertices. Note that for
a single model there are possibly several hypergraphs depending on
the number of independent diagnosis subproblems, thus we disregard
paths between nodes belonging to different subproblems. Consider-
ing the hypergraph in Figure 1, we can observe path(h1, h2) = 2.

3.2.5 Clustering Coefficient

The clustering coefficient is a known measure of node clusters within
a graph. It is evident that we cannot compute a clustering coefficient
from the graph representations used so far, i.e. the DAG, bipartite
graph and hypergraph, due to the two disjoint node classes. There-
fore, we transform the bipartite graph by projection [18]. In partic-
ular, we remove all nodes corresponding to manifestations and link
two cause vertices vhi and vhk whenever they imply the same ef-
fect, i.e. effects(hi)∩ effects(hk) 6= ∅. Based on the resulting undi-
rected graph featuring only the nodes corresponding to hypothe-
ses, we compute for each node the local clustering coefficient as
c = 2n

ki(ki−1)
, where n is the number of neighbors of the node and

ki the number of edges between the neighbors of n. While in net-
work analysis the projection of bipartite graphs results in coefficients
differentiating from typical one-mode networks, this does not pose
an issue in our case as we are solely interested in the models in our
problem space. Thus, the clustering coefficient provides for our mod-
els another measure of covering between hypotheses.



3.2.6 Kolmogorov Complexity

A simple encoding-based measure on a graph is its Kolmogorov
complexity, which defines a value equal to the length of the word
necessary to encode the graph. A straightforward manner in this con-
text is to compute the complexity based on the adjacency matrix of
the undirected graph [25].

3.2.7 Observation Dependent Metrics

Since not only the topology of the model is of interest, but also the
structure of the current diagnosis problem, we measure the indegree
and the overlap among the elements of Obs as well as the number
of diagnosis subproblems involving variables of Obs, in case several
exist.

4 Meta-Approach

Algorithm selection aims at identifying the most appropriate method
out of a portfolio of techniques for a given problem instance in re-
gard to its performance [35]. Performance in this context is most
commonly associated with the computation time but could also re-
fer to accuracy or simplicity. The model as described by Rice [35]
advocates for the use of features inherent to the problems within
the problem space in order to accurately map a new sample to its
most effective or efficient algorithm. This mapping is based on em-
pirical performance data on representative samples of the approaches
present in the algorithm space [17]. On basis of the features extracted
and the execution records, a predictor can be trained which can deter-
mine aspects of the problem influencing the performance of an algo-
rithm. Thereby each problem can be described by a set of attributes
which together with execution data allows a predictor to forecast the
most valuable algorithm on an instance. Machine learning has been
identified as a feasible approach to use as a prediction tool.

Generally, there are two possible objectives; either one algorithm
of the portfolio is to be selected based on a single predictor or for
each approach within the portfolio the performance metric should be
determined as a basis of the selection. The latter requires a distinct
empirical hardness model for each method within the portfolio and
thus whenever the algorithm for a new instance is to be selected,
for each approach a prediction has to be made [13, 17]. SATzilla
[38] is an example of such a portfolio approach within the domain of
SAT solvers. For our meta-technique, however, we consider the first
variant, where we train a single classifier for all abductive reasoning
methods to select a single approach for execution.

We consider a 1-of n portfolio [38], where there are n algorithms
to choose from but only one is selected and executed to solve the di-
agnosis problem. Within the context of diagnosis our meta-approach
works the following way: As mentioned the foundation of model-
based diagnosis is a description of the system to be diagnosed. Thus,
the majority of the features can be computed offline on the diagnosis
models present. Further, within this phase the empirical data on com-
putation times of the various abductive reasoning approaches can be
collected and on basis of the metrics and the runtime information a
machine learning classifier is trained. Whenever the diagnosis pro-
cess is triggered by a detected anomaly, we retrieve our previously
learned machine learning classifier as well as the offline determined
metrics of the diagnosis model. Algorithm 1 describes the online
portion of the meta-approach, which is executed whenever new di-
agnoses are to be computed. Online we have to collect the current
PHCAP’s instance-based features such as |Obs| or the number of

independent diagnosis subproblems comprising the current observa-
tions. Based on the online and offline generated attributes we supply
the feature vector φ with the measurements of the current diagno-
sis problem. By providing all features to the machine learning algo-
rithm, we in turn retrieve a predicted best abduction method out of
our portfolio for this specific scenario based on the trained classi-
fier and the instance’s features. Subsequently, we can instantiate the
diagnosis engine with the corresponding abduction method as well
as diagnosis problem and compute the set of abductive explanations,
i.e. ∆− Set.

In the remainder of this section we describe first our portfolio
which currently includes five abductive diagnosis methods and sec-
ond we list the metrics we have used within the meta-approach.

4.1 Portfolio
We employ a 1-of 5 portfolio, i.e. we select one approach from the
static algorithm space containing five methods which can be utilized
for abductive reasoning based on a propositional logic model. For
each technique, we give a brief description of the underlying notion.
In particular, we utilize an Assumption-Based Truth Maintenance
Systems (ATMS) [4, 5] as a general abduction engine for proposi-
tional Horn clauses [19]. Besides the ATMS our portfolio holds var-
ious hitting set algorithms, which are capable of computing minimal
diagnoses as shown in Section 2.2. Thus, we simply compute for each
oi ∈ Obs the set causes(oi), store them in the set S and derive the
minimal hitting sets for S. The hitting set routines we included in our
meta-approach are the following: Binary Hitting Set Tree (BHSTree)
[21], HS-DAG [34, 10], HST [36], and Berge’s algorithm [2, 8].

4.1.1 ATMS

The ATMS operates on a graph representation of the logical theory,
where propositional variables are represented as nodes and the re-
lations within the theory determine the directed edges. By utilizing
a label for each node, the ATMS determines the subset minimal set
of hypotheses implying each vertex and thereby allows to directly
record abductive explanations. Furthermore, by recording contradic-
tions it retains consistency. In order to generate the diagnoses for a
given PHCAP, a clause is added such that o1 ∧ o2 ∧ . . .∧ on → obs,
where o1, o2, . . . , on ∈ Obs and obs 6∈ A. The label of obs then
contains the solution to the PHCAP.

4.1.2 HS-DAG

Reiter’s [34] minimal hitting set approach exploits the structure of
a tree. To compute the hitting sets an initial set out of S is the ded-
icated root node. The tree is then iteratively extended in a breadth
first manner, where each node n is labeled by a set s ∈ S in case s
is disjoint to the set of edge labels of the current path. If this is the
case an outgoing edge h(n) is generated for each σ ∈ s and after
all s ∈ S have been processed each leaf represents a hitting set. To
ensure minimality various techniques on pruning the tree have been
developed. Some inadequacies of Reiter’s algorithm were corrected
by Greiner et al. [10] and they further devised their HS-DAG as a
version of Reiter’s approach performed on a DAG instead of a tree.

4.1.3 HST

The HST variant of HS-DAG operates on a tree instead of a graph
and avoids the construction of unnecessary nodes and costly subset



Algorithm 1 MetAB

procedure METAB (A,Hyp, Th,Obs)
m← retrieveClassifier() . Retrieves trained model
φoffline ← retrieveMetrics(A,Hyp, Th) . Retrieves the previously computed model metrics
φonline ← computeMetrics(A,Hyp, Th,Obs) . Computes the instance-based features
φ = φoffline ∪ φonline

algorithm← predict(φ,m) . Forecasts the best performing algorithm for the diagnosis problem
∆− Set← diagnose(algorithm,A,Hyp, Th,Obs) . Computes diagnoses based on the predicted algorithm for the PHCAP
return ∆− Set

end procedure

checks [36]. Based on an ordered list of the elements within S the
algorithm limits the number of outgoing edges for each node to a
specific range within the ordered list. By checking the current path
and the tree already constructed, the algorithm decides to whether
a node has to be generated or the corresponding hitting set will be
constructed later during the computation.

4.1.4 BHSTree

Lin and Jiang [21] propose the Binary Hitting Set Tree. First the
tree is constructed by splitting input sets on particular elements and
recursively adapting the sets and building the tree. During the bottom
up traversal the hitting sets are constructed by merging the data of
the child nodes. The minimization is performed by a minimization
function µ, which is not specified in detail in their paper.

4.1.5 Berge’s Algorithm

This minimal hitting set algorithm, sometimes referred to as Berge’s
algorithm, uses an intuitive notion to compute hitting sets [8, 28].
By definition a hitting set intersected with any set of S is not empty,
i.e. each set of S has to contribute to each hitting set. In Berge’s
algorithm the minimal hitting sets are constructed and modified in-
crementally. Initially, the set of hitting sets H is empty. Whenever a
new s ∈ S is to consider, each η ∈ H is checked whether s∩ η = ∅.
In case it is not, i.e. η already hits s, η remains unchanged, otherwise
it is removed from H and for each σ ∈ s a new set is created con-
taining η and σ. By checking whether subsets are present within H
the algorithm ensures to derive minimal hitting sets.

4.2 Features
In Section 3 we discussed the metrics we extract from our logical
problem instances. Here we simply list the properties we compute in
our meta-approach.

1. Logic model specific

• Number of hypotheses

• Number of effects

• Number of causal relations, i.e. clauses in the theory

• Number of independent diagnosis subproblems

• Average size of independent diagnosis subproblems

2. DAG

• Outdegree of hypothesis nodes (maximum, average, standard
deviation)

• Indegree of effect nodes (maximum, average, standard devia-
tion)

• Covering (maximum, average, standard deviation)

• Overlap (maximum, average, standard deviation)

3. Undirected graph

• Kolmogorov complexity based on adjacency matrix

• Local clustering coefficient (maximum, average, standard devi-
ation)3

4. Hypergraph

• Path length (maximum, average, standard deviation)4

5. Instance specific/Observation dependent

• Number of observations

• Indegree current observation nodes (maximum, average, stan-
dard deviation)

• Overlap current observation (maximum, average, standard de-
viation)

• Number of independent diagnosis subproblems including cur-
rent observations

While Hutter et al. [14] state that the feature extraction method
should be efficient, in our framework only the computation of a sub-
set of these attributes has to be performed online, namely the compu-
tation of the instance specific metrics. The creation of the diagnosis
models, the computation of the basic model features, i.e. feature sets
1 to 4, and the training of the classifier are performed offline. Thus,
online the observation specific metrics have to be extracted, i.e. fea-
ture set 5, the algorithm appropriate for the problem instance has to
be predicted and the diagnoses have to be calculated.

4.3 Empirical Evaluation
In this section we evaluate the feasibility of our meta-approach. On
the one hand we assess the quality of the model properties to train
a machine learning classifier capable of predicting the most efficient
algorithm out of the portfolio in regard to its runtime for a specific
PHCAP instance. On the other hand, we examine the efficiency of
the meta-approach overall in comparison to the abductive reasoning
algorithms in the portfolio.

Our meta-approach itself is implemented in Java as well as the
ATMS engine, BHSTree5 and Berge’s algorithm. For the remaining
hitting set algorithms, i.e. HS-DAG and HST, we exploit PyMBD6

[33], a publicly available python library of minimal hitting set al-
gorithms. To create a predictor based on the features we utilize the

3 Based on the projection of the undirected graph only containing hypothesis
nodes.

4 Path length between hypothesis vertices.
5 http://www.ist.tugraz.at/modremas/index.html
6 http://modiaforted.ist.tugraz.at/downloads/pymbd.zip



Waikato Environment for Knowledge Analysis (WEKA) library [11]
which provides a vast variety of classification algorithms. The ex-
periment was conducted on a Mac Pro (Late 2013) with a 2.7 GHz
12-Core Intel Xeon ES processor and 64GB of RAM running OS X
10.10.5.

4.3.1 Data

In order to evaluate the meta-algorithm we generated a test suite of
artificial samples. Note here that while there are real-world sam-
ples based on FMEAs, we do not incorporate them in this evalua-
tion as the size of the practical models is rather limited. The syn-
thetic samples obtained differ in their number of hypotheses, effects,
connections and the covering and overlap between causes and man-
ifestations, respectively. Conjunctions of causes and disjunctions of
manifestations were created randomly within the samples and it was
ensured that instances with various independent diagnosis problems
were present in the test suite. A total of 195 samples were created
with a varying number of hypotheses (12 ≤ |Hyp| ≤ 3120), ef-
fects (1 ≤ |M | ≤ 5000), clauses (12 ≤ |Th| ≤ 5100) and
(1 ≤ |Obs| ≤ 30). With each experiment run we collected the 31
metrics described in the previous section to build our feature vector7

for the classification. For each problem instance we executed our ab-
ductive reasoning algorithms and recorded the most efficient algo-
rithm on each problem instance. To evaluate the classification based
on the features we randomly split the test suite into a training set
comprising 80% of the data and a test set holding 20% of the exam-
ples. We standardized our data before performing any classification.

4.3.2 Results

Before selecting the classification method, we performed cross val-
idation on several classification algorithms available in WEKA on
the training data. Based on the accuracy obtained we decided to use
WEKA’s implementation of a general algorithm for locally weighted
learning LWL. While within this experiment we did not compare dif-
ferent classifiers besides the initial informal evaluation, we do be-
lieve that examining various machine learning algorithms will be of
interest in future research on this matter. LWL performs prediction
by building a local model based on the weighted neighborhood data
of the attribute of interest. In our case the this attribute is nominal
and simply corresponds to the algorithms name. In regard to the pa-
rameters we utilized a brute force nearest neighbor search algorithm,
included all neighbors in the linear weighting function and an en-
tropy based classifier.

The classification utilizing LWL and based on the metrics reaches
a satisfactory success rate of 71.79% (MAE=0.22, RMSE=0.31) cor-
rectly predicted instances, i.e. the selected algorithm was in fact the
most efficient on the problem, on the test set. The confusion ma-
trix in Table 2 shows the number of correctly and wrongly classified
instances. From the contingency table it is apparent that within the
test set Berge’s algorithm was the dominant approach, thus, our pre-
dictor classified all but one instance as Berge’s algorithm. A known
limitation of this type of algorithm, selection where simply a single
approach is chosen and executed on the instance, is that in case the
prediction is incorrect the meta-approach might be rather inefficient
[17]. It is to note that in case our classifier chose a slower approach,
the selected algorithm was the second fastest within the portfolio. On

7 Note that the feature vector itself holds 32 values, as one is the nominal
value corresponding to the algorithm’s name. This last feature is to be pre-
dicted.

the test set the meta-approach was on average 1.57% slower than an
optimal algorithm selection (MetAB Opt), i.e. the predictor would
classify every instance correctly, would have been.
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Figure 2: Underlying statistical distributions of the log runtimes for
the test set.

We explored WEKA’s attribute selection in order to determine
whether we could remove certain features while achieving the same
prediction accuracy. Utilizing the meta-classifier with the LWL clas-
sifier, we examined various selection approaches on the training data
and could diminish the set of features significantly from 32 to around
four8. The number and composition of the reduced attribute set de-
pends highly on the performed selection process. For example uti-
lizing the OneR evaluator and limiting the number of features of
the reduced set to three, we receive the attribute set consisting of
the number of current diagnosis problems , the number of observa-
tions and number of effects of the entire model. Attribute selection on
grounds of the information gain results in number of current diagno-
sis problems, the number of observations, the average path length on
the hypergraph and its standard deviation. Utilizing the SVM-based
reduction, we receive the number of observations, the standard devi-
ation of the indegree of the nodes representing the observations, the
average current covering relation and its standard deviation as well
as as the average of the covering relation over the entire model. As
can be seen the size of Obs plays an essential role in predicting the
preferable algorithm. In regard to the remaining selected properties
they provide information on the PHCAP, i.e. the current observa-
tions, and various metrics on how hypotheses are connected through
effects. An in depth analysis of a reduced feature reduction would be
a topic of further research.

Table 2: Confusion Matrix for the artificial test set. The rows repre-
sent the actual number of instances within the category, while the
columns show the predicted outcome.

Berge HS-DAG ATMS BHSTree HST Total
Berge 27 0 0 0 0 27

HS-DAG 1 0 0 0 0 0
ATMS 2 0 0 0 0 2

BHSTree 8 0 0 0 0 8
HST 0 0 0 0 1 1
Total 38 0 0 0 1 39

Figure 2 shows the distribution of the log runtime data for the

8 The feature of the most efficient algorithm remains of course within the set
after selection and therefore accounts for one feature in the reduced vector.
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(a) Cumulative runtimes over the entire sample set.
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(b) Underlying statistical distributions of the log runtimes for the entire sam-
ple set.

Figure 3: Runtime plots over the entire sample set.

test set. In case of our artificial examples the meta-approach MetAB
(M=0.83 ms, SD =1.54 ms) performs well, i.e. is on average the
most efficient. On average its is 99% faster than HST (M=82.78 ms,
SD=455.65 ms), 94.86% more efficient than the ATMS (M=16.16
ms, SD=76.76 ms), around 85% faster than BHSTree (M=5.57 ms,
SD=30.43 ms) and Berge’s algorithm (M=5.9 ms, SD=32.72 ms),
and still computes diagnoses around 58.27% faster than the HS-DAG
(M=1.99 ms, SD=4.5 ms).

The overall runtime for the meta algorithm is determined by (1)
the computation of the online metrics, (2) the time it takes to create
the feature vector, supply it to the classifier and predicting the best
algorithm and (3) the diagnosis time of the suggested abduction pro-
cedure. In regard to the feasibility of the meta-approach overall in
comparison to other abductive diagnosis methods, we like to refer
back to a particular characteristic of model-based diagnosis, namely
the availability of a system description offline. As the model has to
be present before the computation of the diagnoses, it allows us to
extract most of the metrics utilized in the algorithm selection offline.
Thus, the online computation of the features which are inherent to the
specific instance of the PHCAP is negligible (< 0.1 ms). The predic-
tion of the algorithm for a single instance for the diagnosis models we
investigated was insignificant. The third factor, the diagnosis time, is
much dependent on the predictive capabilities of the classifier.

A premature analysis of the results of the test data would sug-
gest that applying Berge’s method to every instance would yield
the optimal runtime for most problems. However, from the cu-
mulative log runtimes Figure 3a we can observe that based on
the entire set of problems, i.e. test and training, Berge is not the
most efficient approach as on several instances its computation time
is notably larger than of other algorithms. On the entire sample
we observe that only considering the algorithms from the portfo-
lio, HS-DAG is on average the best performing approach (M=5.5
ms, SD=32.31 ms) followed by Berge’s algorithm (M=15.62 ms,
SD=68.39 ms) and BHSTree (M=16.88 ms,SD=76.6 ms), while
the ATMS (M=101.37ms, SD=563.85 ms) still outperforms HST
(M=8968.04ms, SD=70873.65ms). Furthermore, based on the pre-
diction accuracy on the test set, we have created a mock meta-
approach (MetAB 71.79%) with 71.79% accuracy as we have expe-
rienced on the test data. Thus, in 71.79% of the samples we recorded
for this approach the optimal time and for the remaining 28.21% the
second fastest time. We choose the instances with the slower run-
times randomly. This mock meta-approach would still outperform,

the other algorithms in the portfolio. In Figure 3b we have depicted
the distribution of the log runtimes of the various approaches.

5 Conclusion
Even though abduction is an intuitive approach to diagnosis, its com-
putational complexity remains a disadvantage. Since the complexity
is inherent to the underlying diagnosis problem, we investigate algo-
rithm selection as a method to predict the most efficient abduction
approach for a particular instance. An essential part within algorithm
selection is the exploration of characteristics of the problems which
contribute to the computational effort. Hence, we consider various
metrics characterizing the type of models generated from failure as-
sessments available in practice. An advantage of this approach in the
context of abductive diagnosis is that the majority of these features
can be collected offline. Based on the attributes we form a feature
vector for a machine learning classifier as part of a meta-approach.
The empirical evaluation showed that the extracted properties of the
instances allow to determine the “best” abduction method. Even in
cases where the classification is incorrect, the approach selects the
second most efficient algorithm and thus overall outperforms the
other diagnosis methods. Therefore, we believe that this meta ap-
proach is a feasible alternative to continuously using a single abduc-
tion procedure. Despite the satisfactory classification results, we plan
on further extending the set of problem metrics, explore the capabil-
ities of various machine learning classifiers as well as determine dif-
ferent attribute combinations yielding a more accurate classification
result.
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