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Abstract. Internet of Things (IoT) data are mostly cloistered in closed IoT in-

frastructures and vertically integrated applications, failing to leverage the poten-

tial interlinking of corresponding APIs. We propose a data model based on 

JSON-LD, in which semantics are added to Web of Things (WoT) APIs, en-

hancing their interoperability and evolvability by the composition of nested 

contexts factoring out shared generic categories. According to this model, we 

present the blueprint of a framework to automatically and iteratively enrich and 

interconnect WoT APIs, through a process of resource crawl, syntax extraction, 

semantic annotation and context generation. Based on our propositions, we 

demonstrate the idea of cross-fertilizing data with a scenario involving three 

separate IoT infrastructures, showing how their data are linked and interoperat-

ed.  
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1 Introduction 

Many existing Internet of Things (IoT) infrastructures are little more than dedicated 

stovepipes that connect one set of sensor devices to a few applications, or watertight 

silos in exclusive mastery of a single operator, stakeholder (as for e.g. metering infra-

structures) or manufacturer (as for the newish breed of “connected devices”). The 

provision of IoT services through APIs relies on such infrastructures, which vary 

widely in scope, scale, genericity, and the levels of abstraction of the data they pro-

vide access to. We refer the IoT APIs as Web of Things (WoT) [1] APIs if they ad-

here to the principles of the REST [2] architectural style, especially by using derefer-

enceable URIs instead of arbitrary identifiers and providing explicit interlinking be-

tween fine-grain resources such as devices, physical entities beyond devices (e.g., 

room or car) and the states and attributes of these.  

A key challenge of WoT API development is the semantic interoperability of data 

exposed by APIs, which refers to the capability of not only matching data, but also 

automatically interpreting them. This challenge comes from the heterogeneity of IoT 

‘things” (from electronic devices to physical objects), the variety of their data models, 

the scarcity of explicit data descriptions, and the limited accessibility of data locked 

inside IoT infrastructures. 
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In response to this, we propose the idea to cross-fertilize data through WoT APIs 

exposed by existing infrastructures. By cross-fertilize, we mean “extract and propa-

gate semantics to connect, exchange and explore data via semantic links, thus provid-

ing enhanced data understanding and uncovering additional knowledge”. We first 

propose an RDF-based data model with JSON-LD [3], in which semantics are divided 

into three parts as JSON-LD contexts to support data interoperability, evolvability and 

semantics reuse. We then introduce the blueprint of a framework that makes it possi-

ble to extract and iteratively propagates semantics based on this model from IoT 

APIs. At last we present how data are cross-fertilized through a WoT-RDF infrastruc-

ture connecting data, ontologies and IoT infrastructures.  

To illustrate our contribution, we present a smart building configuration containing 

a room and a corridor on the same floor managed by different IoT infrastructures. The 

room contains a presence sensor and an electrical door lock using FIWARE [4] and 

also contains a thermostat using Netatmo
®
 [5], while the corridor contains a presence 

sensor using openHAB [6]. Thus three distinct and non-interoperable IoT infrastruc-

tures coexist on the same floor. In addition, there is a mismatch between these infra-

structures since FIWARE does, as other high-level IoT infrastructures, describe phys-

ical entities at a level of abstraction above devices (a room in this example), while 

openHAB and vendor-provided APIs such as Netatmo
®
 are lower-level infrastructures 

that give access to data only at the level of connected devices. 

2 JSON-LD based Data Model 

Following Linked Data principles [7], we propose a RDF data model based on JSON-

LD. A JSON-LD description consists of at least three main parts [3]: 1) @context: a 

context description; 2) @id: an identifier; 3) A JSON description. We use JSON-LD 

rather than other RDF serialization formats such as RDF/XML for three main reasons: 

Separation of lexical/syntactic and semantic levels. JSON-LD contexts [3] can 

either be defined within the same JSON-LD document or by referencing URIs con-

taining context definitions. By referring URIs, the syntax and semantics in a JSON-

LD description are separated into two documents to ensure the evolvability of model: 

whenever a semantic update is required, we simply update the context definition in a 

different URI without making any change in the JSON-LD description. 

Context composition. JSON-LD supports the composition of several contexts for one 

document. By context composition, we are able to specify different abstraction levels 

for semantics included in a JSON-LD document, and promote the reuse of semantic 

definitions. Higher abstraction levels link data from different domains, while lower 

abstraction levels link data from the same subdomain. The complete JSON-LD con-

text results from the composition of contexts in different levels.   

Compatibility with JSON. JSON-LD is totally compatible with plain JSON, and the 

compatibility allows directly updating JSON-LD descriptions to IoT APIs based on 

JSON without making any further change in APIs side.  



To take full advantage of JSON-LD, we specify three levels of abstraction for JSON-

LD contexts. In particular, the value of the “@context” is defined as a URI of a doc-

ument containing the context definition by composing contexts from different abstrac-

tion levels. In the following, we introduce each abstraction level.  

Generic IoT Context: Generic IoT context defines common concepts (e.g., thing vs. 

device, location, time, name, attribute) shared by all domains of IoT. A JSON-LD 

document refers to only one such context.  

Objective: Generic IoT context is used to match and link data from different domains 

through the common concepts used, if any. 

Reference Ontologies: Generic IoT context adopts standard domain-independent 

ontologies such as OneM2M ontology [8]. All IoT data adopt the same references in 

Generic IoT context. 

Domain-specific Context: Domain-specific context defines vocabularies (e.g., 

SoilHumiditySensor) related to the subdomains of IoT (e.g, Smart Agriculture, Smart 

Cities and Smart Home). A JSON-LD context can combine one or more domain-

specific contexts (e.g. smart energy and smart buildings) since possible it corresponds 

to devices and data from different subdomains.  

Objective: Domain-specific context is used to match and link data from the same sub-

domain.  

Reference Ontologies: Domain-specific context references standard domain-

dependent ontologies such as SAREF [9] for smart home domain, or CityGML [10] 

for smart city domain. All data of the same domain adopt the same references in do-

main-specific context. 

Vendor/Technology-specific Context: Vendor/Technology-specific context provides 

references for specific terms related to device manufacturers (e.g., Philips
®
 and 

Netatmo
®
), protocols (e.g., ZigBee and Z-Wave), or technologies (e.g., CoAP). A 

JSON-LD context can combine one or more vendor//technology specific contexts 

since it possible contains data from different vendors/technologies.  

Objective: Vendor/Technology specific context aims at mapping vendor/technology 

specific terms with generic IoT and domain-specific ontologies to link data.  

Reference Ontologies: Vendor/Technology specific context firstly maps ven-

dor/technology specific vocabularies with generic IoT or domain-specific reference 

ontologies; if mapping relation cannot be found, ontologies (e.g., Z-Wave Ontology 

[11]) related to specific manufactures,  protocols or technologies are used; if no se-

mantic reference exists for certain concept, ontologies are created by domain experts.  

For illustration purpose, listing. 1 presents a simplified example of Netatmo
®
 thermo-

stat data from our scenario, in which the URI in the example represents our WoT-

RDF infrastructure introduced in section 3. A detailed description of our scenario with 

all corresponding entities is provided in [12]. The left column presents the JSON-LD 

description based on our data model and three URIs for contexts, and the right column 

illustrates the three genericity levels of JSON-LD contexts used. By just adding two 

lines (i.e., @context and @id) to the basic JSON description provided by the Netat-

mo
® 

API, we transform it into semantically meaningful JSON-LD. The complete 

context for the building, shared by all entities, is composed from three contexts, i.e., 



Netatmo, smart home, and generic IoT; when the context requires to be updated to 

take into account other concepts, we simply modify or add contexts at the required 

level without changing the building context itself.  

 

 

 

 

 

 

 

 

 

 

 

 

Listing 1. Thermostat example 

3 Semantics Extraction and Propagation Framework 

We present the framework of semantics extraction and propagation, which is designed 

to generate semantic data based on the previous model from WoT APIs. The frame-

work is illustrated in Fig. 1.  
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Fig. 1. Semantics extraction and propagation framework 

Generally, starting with the input of REST entry points from different IoT infra-

structures, the framework consists of four modules i.e., REST Crawler, Syntax Ex-

tractor, Semantic Annotator and Context Generator to generate JSON-LD documents. 

Finally RDF triples represented in JSON-LD are stored in a triplestore that provides a 

SPARQL endpoint for user and application queries. 

URI: http://lab.wot-rdf.org/jsonld/thermostat1 

{ 

"@context":"http://lab.wot-

rdf.org/jsonld/context/building", 

"@id": "http://lab.wot-rdf.org/jsonld/thermostat1", 

"status": "ok", 

"body": { 

"temperature": 21.7, 

"unit": "Celsius"}, 

"module_name": "Inside", 

"rf_status": 161} 

 

URI: http://lab.wot-rdf.org/jsonld/context/building 

{"@context": [ 

"http://lab.wot-rdf.org/jsonld/GenericIoTContext", 

"http://lab.wot-rdf.org/jsonld/SmartHomeContext", 

"http://lab.wot-rdf.org/jsonld/NetatmoContext"]} 

 

URI: http://lab.wot-rdf.org/jsonld/GenericIoTContext 

{"@context": { 

"m2m":  "http://www.onem2m.org/ontology/Base_Ontology/" 

"status": "m2m:hasOperationState", 

"body": "m2m:hasOutput", 

"unit": "m2m:concerns" }} 

URI: http://lab.wot-rdf.org/jsonld/SmartHomeContext 

{"@context": { 

"saref": "http://ontology.tno.nl/saref#", 

"biopax": "http://www.biopax.org/release/biopax-level3.owl#", 

"temperature": "biopax:temperature" }} 

URI: "http://lab.wot-rdf.org/jsonld/NetatmoContext 

{"@context": { 

"schema": "http://schema.org/", 

"m2m": http://www.onem2m.org/ontology/Base_Ontology/, 

"module_name": "m2m:isPartOf", 

"rf_status": "netatmo:radioStatus" }} 

 

http://www.onem2m.org/ontology/Base_Ontology/


3.1 REST Crawler 

Most of IoT infrastructures expose REST APIs for user queries. In order to fully ex-

plore the APIs, a REST crawler is expected to automatically discover REST resources 

by following links from REST entry point(s). According to the design principle 

HATEOAS of REST, REST resources descriptions must have well-defined ways in 

which they expose links to related resources [2]. A number of formats define relations 

between resources to support HATEOAS in REST design, and their discovery strate-

gies are introduced in [13].  

In our framework, the REST crawler applies a recursive process of identifying the 

format of resources, extracting relationships from resource descriptions and generat-

ing a RDF graph connecting different resources identified by URIs.  

In our scenario, all three distinct IoT infrastructures use REST as their architectural 

style. Fig. 2 presents the entry points and URI graphs constructed by REST crawler.   
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Fig. 2. URI graphs from three IoT infrastructures 

3.2 Syntax Extractor 

Syntax extractor extracts information from discovered resource descriptions and cre-

ates from these a stub RDF graph for future semantic annotation.  

More than one way transforms hierarchical serialization formats into graphs, and 

here we present a recursive method to generate a RDF graph from JSON-based re-

source description. Other serialization formats are firstly transformed into JSON and 

then are processed in our framework. JSON is built on two base structures, either a 

collection of key/value pairs or an array. The extraction process is introduced as fol-

lows: 1) A first subject is generated by use of the JSON-based resource URI; 2) for a 

collection of key/value pairs, the keys are used to generate predicates in RDF graph 

while the values are regarded as the objects. In case that the value of a key k is anoth-

er JSON object obj instead of a simple data type, an anonymous node anode is created 

as the object of the key k, and anode is the subject of the key/value pair of obj; 3) for 

an array of values, the predicate is regarded as “rdf: predicate”, while the value ele-

ments in array are RDF objects. 4) An elimination algorithm introduced in [14] is 

applied to reduce the redundancy of the RDF graph. 

3.3 Semantic Annotator 

In order to provide semantics for WoT APIs, semantic annotator updates the stub 

RDF graphs from syntax extractor by associating RDF elements i.e., nodes and arcs, 

with three levels of context reference ontologies. The semantic annotator proceeds 

with an iterative process of the following four steps.  



Keywords Matching. The descriptions of RDF elements are matched against ontolo-

gies elements i.e., classes and properties. We adopt the semantic matching algorithm 

introduced in [15] because of its performance on heterogeneities and inconsistence 

matching. The ontology alignment algorithm in [16] is applied to deal with multiple 

matching between one graph element and ontology elements. 

Semantic Reasoning. This step firstly infers the classes and properties in RDF graphs 

based on ontology property’s domain and range: for a RDF statement, if the predicate 

between two RDF nodes is identified, the classes of the subject and object can be 

inferred based on the domain and range of the predicate; equivalently for the contrary 

case. Secondly, this step infers RDF graph elements following semantic rules which 

come from the axioms in ontology definitions.  

Classifying. This step analyzes graph elements’ connections with other elements and 

use pre-trained classifier to refine RDF element. Here we adopt the ontology classifi-

cation algorithm introduced in [17] to create the classifier based on Maximum Entro-

py Markov Model due to the optimum performance for class induction. 

Interlinking. This step discovers RDF graph elements that represent the same con-

cept by use of clustering algorithms to refine RDF graph elements within the same 

cluster. Here we use the approach presented in [18] to calculate the distance between 

RDF graph elements and carry out interlinking step.  

Each internal step runs for sequent. At the end of one cycle, the generated RDF graph 

is sent to the first step to start a new cycle, because certain graph elements deduced by 

latter steps can possibly be used by previous steps to identify graph elements. The 

RDF graph automatically and incrementally propagates through such iteration. The 

iteration stops when the graph has not changed from the previous iteration.  

Fig. 3 presents the simplified output graph of semantic annotator, while a detailed 

graph is presented in [12]. The ontologies used are OneM2M ontology [8] and 

DogOnt [19]. Through SPARQL endpoints, we are able to get additional information 

such as the presence state of the whole floor.   
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Fig. 3. Output RDF graph 

3.4 Context Generator 

In order to transform RDF graphs into JSON-LD documents, context generator trans-

forms the result from semantic annotator to formalized JSON-LD documents with 

three abstraction levels of contexts as defined before. 



Since tools exist to transform RDF between different serialization formats [20], 

here we only present the transformation process from RDF semantics into three levels 

of JSON-LD context. The generation process is a top-down matching process as fol-

lows: for a RDF graph element with semantic label, if a matching exists between the 

semantic label and the reference ontologies of generic IoT context, this label is stored 

in the generic IoT context part; otherwise, context generator checks if a matching 

exists between the semantic label and the reference ontologies of domain-specific 

context. If yes, this label is stored in the domain-specific context part; otherwise, it is 

stored in the part of vendor/technology specific context. This process repeats until all 

semantics in a RDF graph is transformed as JSON-LD context. 

After generation, IoT data from different sources are connected by the generic IoT 

context, and IoT data from the same subdomain are also connected through the do-

main-specific context.  

Fig. 4 summarizes the idea of cross-fertilizing IoT data based on our propositions. 

Semantics extraction and propagation framework connects WoT-RDF infrastructure 

and IoT infrastructures by constructing RDF graphs from IoT REST interfaces and 

generating JSON-LD descriptions based on our data model. WoT-RDF infrastructure 

provides two views for the linked IoT data: general RDF graphs for SPARQL query, 

and JSON-LD documents to connect IoT infrastructures. Three parts of ontologies 

respectively provides semantics in three abstraction levels.  

 

Fig. 4. Cross-fertilizing IoT data with JSON-LD  

Regarding queries, users are able to not only perform local queries through REST 

APIs of individual IoT infrastructures, but also query through SPARQL endpoints in 

WoT-RDF infrastructure to get global information between IoT infrastructures and 

deduce explicit knowledge. Moreover, JSON-LD documents are also stored in WoT-

RDF infrastructure and are used to update IoT infrastructure-side descriptions (for 

open IoT infrastructure such as FIWARE). By such updates users are able to locally 

perform queries via individual infrastructure APIs to get additional semantics and 

interconnected information.  



4 Conclusion 

JSON-LD is a promising evolutionary solution to cross-fertilize data through existing 

WoT APIs, maintaining full backward compatibility if needed. A framework has been 

presented to generate, by iterative propagation, specified JSON-LD data from WoT 

interfaces, and a WoT-RDF “superstructure” has been introduced to interoperate ex-

isting WoT infrastructures from the semantic level. This idea has been proposed as a 

solution for further opening and “semanticizing” the APIs of FIWARE, which is itself 

a high-level open infrastructure, but it can be taken up, as we have shown as a mini-

mal pragmatic interoperability solution between existing platforms or infrastructures, 

taken as they are, without the need to subsume, replace or even alter them. 
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