
State-of-the-art Web Applications using
Microservices and Linked Data

Aad Versteden and Erika Pauwels

TenForce, Havenkant 38, 3000 Leuven, Belgium
{aad.versteden,erika.pauwels}@tenforce.com

Abstract. This paper describes the current state of mu.semte.ch, a
platform for building state-of-the-art web applications fuelled by Linked
Data aware microservices. The platform assumes a mashup-like construc-
tion of single page web applications which consume various services. In
order to reuse tooling built in the community, Linked Data is not pushed
to the frontend.

Keywords: microservices, semantic model, REST API, Linked Data,
RDF, SPARQL, triple store

1 Introduction

Considering the construction of modern web applications in the industry, single
page apps have become king. Frameworks like EmberJS[1], Angular.js[2] and
React[3] have taken the industry by storm. These frameworks make it easy to
mash up various web services into a unified application. But how do these web
services interact? Can we use Linked Data as a solution to connect various web
services? mu.semte.ch offers a pragmatic answer to these questions with the
easy construction, sharing and consumption of microservices.

The mu.semte.ch platform[4] does not start from the assumption that Linked
Data has value, but uses Linked Data as an ally to solve the harder problems in
a microservices based architecture. Under the assumption that microservices can
provide an answer to the needs of a modern single page application, how would
these microservices interact? If they need to share information, do they need to
depend on each other? Microservice dependencies are one of the harder problems
to crack in microservices based architectures[5], but Linked Data can offer an
answer. By sharing a joint model and database, the services all depend on the
same data layer, rather than on the existing services. This means a service can go
down, or scale up, without affecting other services. We could share information
on a web scale, without services being dependent on each other’s existence, by
sharing only the data layer.

We are using this platform in real-world scenarios to build web applications
and share code across projects. Simplicity is key in order to minimize the cost
of training, application development and system setup. The semantic model is
not pushed to the frontend, in order not to retrain developers and in order to



make full use of existing tooling. Since our initial description of the platform,
we have tested and adapted the platform to these real-world use cases. The
platform has evolved from an initial idea to our prime platform for quickly de-
veloping practical applications on top of Linked Data. Core microservices have
been constructed which can handle the bulk of traditional data retrieval and
creation needs. Microservice templates have been built indicating how new lan-
guages can be supported. And a new way has been devised to easily share code
both in the frontend as well as in the backend.

In this paper we describe the current state of the platform. We start with
a short overview of the current platform, and why it works, and continue with
state-of-the art ways of constructing, sharing, and displaying content. Finally, we
describe some related work and the lessons we have learned so far. Throughout
the paper we will use a voter app as example to clarify concepts and provide
code examples. The voter app allows users to create topics which other users
can upvote. A user can upvote a topic only once and must be able to withdraw
his vote. An implementation of this application is available on GitHub[6].

2 Platform architecture

The mu.semte.ch platform enables extensive code-reuse for modern web-based
applications. As single page applications stay alive in the frontend for extensive
periods, even beyond network disconnects and page closes, the system can be
considered to be a true distributed system. A clear split is made between the
semantically enabled backend and the visualisation-centered frontend, as shown
in Figure 1.

Fig. 1. mu.semte.ch platform stack

The frontend considers current state-of-the art solutions for building sin-
gle page applications. The backend considers very simple isolated microservices.
Aside from a limited set of core microservices, each microservice offers an answer



to a specific user problem without depending on other microservices. For exam-
ple, the voter app will require microservices to register users, handle login, man-
age topics and vote on a topic. The glue between the backend and the frontend
is the RESTful JSONAPI[7] format, which is becoming the de facto standard
for communication in the JavaScript community. The general approach of the
mu.semte.ch framework is described more in depth in [8].

2.1 Single page application

The single page application is powered by EmberJS[1] in our architecture. This
single page application framework heavily bets on tooling and follows the mantra
of sensible defaults and convention over configuration. For example, since the
v1.13 release, it follows the JSONAPI standard[9]. EmberJS makes it also pos-
sible to easily share common code between applications in the form of addons.
The mu.semte.ch framework currently offers addons for a login, registration and
authorization management service[12].

For example, if we want to add a login screen to the voter app, the ad-
don allows us to download, include and compile code for a login component by
running

> ember install ember-mu-login

From there on, you can include mu-login in a frontend template and all
logic for handling logins will be taken care of by the addon. This heavy focus
on simplicity and code reuse through solid tooling is apparent in every layer of
mu.semte.ch.

2.2 Middleware: mu-identifier and mu-dispatcher

Microservices should be as simple as possible, whilst still offering easy reuse. Two
types of support are given for this case. The first level of support is in terms of
the middleware layer described here. The second is by offering templates which
offer clear guidelines on how to implement a microservice. Both are shown in
Figure 1. In this section we describe the middleware.

The middleware serves two purposes: identification of a client, and routing
a request to the correct microservice. The mu-identifier component[10] iden-
tifies the client by setting a secure cookie on the client. The cookie contains
a tamper-proof URI identifying the specific client. This cookie is read by the
mu-identifier which parses the cookie and sets the MU-SESSION-ID HTTP
header on the request to indicate the session URI of the current client. All in-
formation connected to this client, like which user has logged in on this client,
will be stored in the triplestore. The identifier therefore does not need to talk
to the triplestore. The augmented request is forwarded to the mu-dispatcher

component[11].
The mu-dispatcher receives the request and forwards it to the responsible

microservice. This configurable behaviour makes it simple to host multiple mi-
croservices whilst avoiding collisions on the URLs used by each microservice.



With this approach, a payment service and a user-registration service can both
offer a /submit route without colliding with each other. In our voting app the
dispatcher could be configured to dispatch all requests starting with /sessions

to the login service. Requests starting with /vote are dispatched to the plus-one
microservice. Similar dispatching rules can be configured for registration and
topic management. The complete configuration looks as follows:

match "/sessions/*path" do

Proxy.forward conn, path, "http://login/sessions/"

end

match "/vote/*path" do

Proxy.forward conn, path, "http://plusOne/"

end

match "/accounts/*path" do

Proxy.forward conn, path, "http://registration/accounts/"

end

match "/topics/*path" do

Proxy.forward conn, path, "http://resource/topics/"

end

2.3 Templates and microservices

The microservices maintain the business logic and manipulate the state of the
application. They should be easy to understand because they have a limited
scope. Developers receive a lot of freedom in the languages and technologies they
prefer. The only constraints a microservice must adhere to are communication
over HTTP, (meta-)information storage in a triple store and packaging in a
Docker container[13].

Developing a microservice requires some initial work that needs to be done
over again for each microservice. For example setting up a web server to consume
HTTP requests and connecting to the triplestore to execute SPARQL queries.
These functions are not core to the microservice and can easily be reused across
microservices. In the mu.semte.ch platform they are therefore supported by
templates. Each language which is supported on the platform has a template for
building microservices. Currently templates for Ruby, Javascript and Python
are available on GitHub[12]. Based on the development strategy of the target
language, the template offers support for idiomatic ways of development (i.e. live
code reloading), the inclusion and downloading of dependencies (i.e. installation
of Ruby gems) and the building of new Docker images. The templating structure
is also kept to a bare minimum. In order to create a new microservice which
returns the votes for a particular item, the following code would suffice:

== Dockerfile ==



FROM semtech/mu-ruby-template:1.2.0-ruby2.1

MAINTAINER Aad Versteden <madnificent@gmail.com>

== web.rb ==

get ’/:id/count’ do

resp = query "

PREFIX votes: <http://mu.semte.ch/vocabularies/ext/votes/>

PREFIX mu: <http://mu.semte.ch/vocabularies/core/>

SELECT (COUNT(?user) AS ?votes)

WHERE { GRAPH <#{settings.graph}> {

?user votes:plusOne/mu:uuid \"#{sparql_string params[’id’]}\"

} } "

status 200

{ data: { attributes: { votes: resp.first["votes"].to_i } } }.to_json

end

2.4 Triplestore: sharing knowledge between microservices

Microservices simplify application complexity as the scope of each service is
limited. Each service offers very specific functionality by querying and alter-
ing a specific type of information. This information may, however, overlap be-
tween services. The mu.semte.ch platform leverages Linked Data to tackle the
knowledge-overlap.

An example clarifies our case in point. Take user login and registration. A
registration service could offer support for registering users, whereas a login
service could offer support for users to login. The login service needs to know
which users have registered. A joint data layer allows the services to operate
independently of each other. If microservices are truly minimalistic, then they
will invariably have an information overlap.

How do you share information between these microservices and how do you
keep them in sync? Linked Data and semantic technologies offer a solution.
Graph databases, like triple stores, can contain flexible models that can be
queried and manipulated by all microservices. By using well-known and stan-
dardized ontologies to store the information we can ensure the services are talking
about the same content in the same way.

A simple example expressing the prototypical case of a logged in user is pre-
sented in Figure 2. The grey zone of the picture is generated by the registration
service. The blue content is generated when the login service identifies the user.
It is clear that the registration service and the login service work in tandem to
fulfill a complete login experience for the user. If both services speak the same
language and have a similar understanding of what a login service entails, their
implementation can evolve separately.

The services depend on ontologies for expressing the portion of the world our
application is interested in. If the ontologies are chosen wisely, the application
itself can evolve naturally. This also makes almost every microservice user-facing.



Fig. 2. User login example

Their API is presented -almost directly- to the frontend. This vastly simplifies
the mental model of the application and makes future scaling easier.

The store uses SPARQL 1.1, including update semantics, offering an easy
to understand and well documented technology for information storage. Where
necessary, links to external systems can be made. For example to store a file
uploaded by the user.

3 Industry solutions to a network of services

Microservices and single page applications have grown in popularity in recent
years. Much development has occurred on both of these fronts. On the microser-
vices front, Docker has paved the path in terms of deployment and maintenance.
On the single page apps front multiple frameworks have stood up. More impor-
tantly, standards for communicating with these single page applications are on
the rise with the standardization of JSONAPI. The state-of-the-art tools which
we have seen in use in the industry are described in this section, they contain
the context in which this platform operates.

3.1 Docker

The direction the Docker community is moving makes it trivial to host microser-
vices. Docker allows Linux hosts to run extremely lightweight Virtual Machines.
A virtual machine can contain all necessary libraries, except for kernel mod-
ules. The complex task of setting up microservices and keeping them running,
has become trivial. The mu.semte.ch platform benefits from this by using the
Docker ecosystem for sharing and maintaining microservices. Docker Hub[14] al-
lows services to be shared easily and freely. This makes downloading and setting
up microservices trivial.



3.2 Docker Compose

Docker Compose[15] provides a way to describe an ecosystem consisting of mul-
tiple microservices together with their configuration and connections in a single
YAML file. The voter app could be described as follows:

version: ’2’

services:

identifier:

image: semtech/mu-identifier:1.0.0

ports:

- 80:80

dispatcher:

image: semtech/mu-dispatcher:1.0.1

volumes:

- ./config/dispatcher:/config

plusOne:

image: madnificent/plus-one-service

database:

image: tenforce/virtuoso:1.0.0-virtuoso7.2.0

environment:

SPARQL_UPDATE: "true"

DEFAULT_GRAPH: "http://mu.semte.ch/application"

ports:

- "8890:8890"

volumes:

- ./data/db:/data

resource:

image: semtech/mu-cl-resources:1.10.1

volumes:

- ./config/resources:/config

registration:

image: semtech/mu-registration-service:2.4.0

environment:

MU_APPLICATION_SALT: mysupersecretsaltchangeme

login:

image: semtech/mu-login-service:2.5.0

environment:

MU_APPLICATION_SALT: mysupersecretsaltchangeme

Mu-project[16] offers a good start to bootstrap such a new ecosystem in
the mu.semte.ch framework. Docker Swarm[17] on its turn offers multihost de-
ployment in a transparent way. It seamlessly integrates with Docker Compose
allowing the user to deploy his ecosystem of microservices on a cluster with a
single command.



As an example, downloading the necessary set of libraries, starting all mi-
croservices, and connecting them to each other, can be done with the following
commands:

git clone https://github.com/madnificent/voter.git;

cd voter;

docker-compose up

3.3 JSONAPI

With the rise of single page applications, services offered on the web stopped
hosting HTML pages. New services offer a JSON view instead. The prolif-
eration of JSON-based APIs that resulted from this has been met with the
community-based JSONAPI standard. This standard describes in which way
resources should be shared across the web. In order to make applications easy
to build, we have embraced this community standard. It minimizes discussion
about the JSON responses which should be implemented. Removing this discus-
sion turns the mu.semte.ch platform into an efficient tool for making a team
cooperate.

The JSONAPI model is more ambiguous than a Linked Data model. Al-
though the model can be well-defined within an application, sharing informa-
tion across applications is not necessarily supported as semantics may differ per
service. Using JSON-LD resolves this ambiguity. The type of the resource and
its properties are well-defined and can be shared with any application. We sacri-
fice this general expressivity in order to match well with current best practices.
These best practices are sometimes assumed by external libraries. Our choice
thus makes it easier to reuse libraries built by the community and commonly
used in the frontend.

Next to JSONAPI a number of other hypermedia formats have been defined
such as HAL, Collection+JSON, Siren and Mason. These standards specify a
serialization format, but do not specify the interaction (e.g. how documents
can be created, updated and deleted). JSONAPI does describe those operations
leaving less room for discussion.

4 Alternative approaches

Our approach is an example of a three-tier architecture[18]. A paradigm which is
well-known and natural for developers. By representing the data in a semantically
correct way, it becomes easy to represent the middle tier as a set of microservices.
Our approach makes these microservices easy to download, install, and run,
by using Docker. The approach also makes the microservices easy to run, by
providing a general pattern to be used by the middle tier in most scenarios.
Namely, the use of a webservice which yields JSONAPI in its response. The
approach is therefore novel in the tooling used making it more practical in a
modern world than previous approaches[5].



Although comments have been made that web applications often do not fol-
low the idea of a three-tier architecture[19], this is not the case with microservices
and single page web applications. The services can be consumed by other (sin-
gle page) applications, whilst the single page applications can easily switch to
services offered by external providers. The frontend cannot access the data layer
directly at all. We do face the claim that a DBMS does not count as a tier, but
feel that a lightweight semantic model of the domain model accessible through
SPARQL may be sufficient. We need more experience to validate whether rea-
soning in the database is an absolute necessity or not. A store with inferences
seems to address the concern that a DBMS does not count as a data tier.

Other frameworks have been built on top of linked data. Graphity[20] is one
of them. We differ however in two major ways. The first is that we assume the
processing of requests to be written as microservices, written in common pro-
gramming languages, rather than trying to express everything in RDF. We con-
sciously use RDF only to describe the domain model. This limits the paradigm
shift for developers and allows the use of commonly known tooling. Secondly, we
assume that the application serving the client will be riddled with custom re-
quests. Hence we use an API to communicate with the microservices, and build
a fully custom interactive UX. Although components can be reused, it seems
that tiny changes are often necessary requiring flexibility at the frontend.

5 Lessons learned

Our experience with this platform so far has been very positive. Aside from
the initial discovery of the strong and weak points of this architecture, it has
shown its use in various projects covering various situations and domains. It is
comparatively easy to get people started with the necessary technologies. Code
reuse has shown to be plain and simple in real-world cases. We have also seen
that it is easy to get new technologies included, though that does give rise to
some questions.

We have used mu.semte.ch in quite a few projects since we have paved
the first roads past year. First and foremost, quite a few of the extensions to
mu-cl-resources microservice have been done to match the needs of the Your
Data Stories project[21]. These changes have made this specific microservice a
lot more flexible. Some of these changes have had a positive impact on internal
projects supporting ESCO. The ESCO Mapping Pilot has been a pilot case us-
ing mu.semte.ch as a basis for ESCO software. Our evaluation was very positive
and the subsequent ESCO Mapping Platform and ESCO Translation Platform
have both used mu.semte.ch in an idiomatic way. Furthermore, the platform
has been used to support webcat, a demo frontend for the DCAT standard. The
platform has also shown its use in the development of the BDE-pipeline-app,
an application for supporting the postponed launching of computations in the
pipelines of the Big Data Europe project[22]. Last, but not least, a lot of lessons
were learned whilst constructing MusicCRM, a platform for supporting the ad-
ministration of music associations. The mu.semte.ch platform was contrived



whilst starting the development of MusicCRM, hence this application has gone
through the complete evolution of the platform. It has been our drive to make
upgrades smooth and simple. With the projects we have undertaken so far, we
notice that developers which know the platform naturally shift towards using it
for new applications. We suppose that the platform strikes a good combination
of fun and efficiency.

It has been fairly easy to get new developers to develop new microservices.
Experienced developers need little information to understand the freedom and
constraints they receive in the backend, rookie developers get started easily be-
cause they can start in a (near-)greenfield setting. Our dissemination towards
new users has mostly been handled orally. We are actively working on written
documentation to get developers started on the platform. Some experienced de-
velopers have a natural tendency to stretch the constraints of the platform, which
may pose a risk when sharing microservices. We need to see how the ecosystem
evolves when direct human contact is not an option.

Introducing new developers to the frontend is straightforward. The frontend
behaves as an idiomatic EmberJS application. It has been easy to guide people
in the application as there are good books and guides around for this framework.
Our extensive focus on tooling has also made the builds of this framework re-
producible, splitting off another risk. Getting experienced EmberJS developers
started, or letting them teach others is simple due to the many conventions in
the framework. Developers not experienced with single page applications seem
to need some time to grok the paradigm shift.

We have seen more code-reuse than we have seen with more traditional stacks
we have used internally. We accredit this to the fact that a microservice, once
written, needs no adaptations in order to be used within another application.
Much unlike other approaches, the inclusion cannot easily break existing code
due to mismatching dependencies. As both frontend and backend components
can be shared, there is much drive for developers to develop components which
can be reused early on. Due to this code-reuse we are looking at more generic
building blocks which may be used in many applications (i.e. a component for
paginating and sorting data tables). There is still low hanging fruit in this do-
main.

There is a lot of flexibility in the implementation-language and strategy for
the microservices, which has its downsides. A common stack using the mu.semte.ch
platform can easily use four programming languages. This is frightening to some
developers and may hinder company-wide adoption. It may be hard to find
developers to maintain all of these languages. We have noticed that most mi-
croservices we have developed can be rewritten in under ten days of development
which alleviates this issue. When used carefully we have also noticed this to be
of great benefit. For the Big Data Europe, the REST interface for deploying
pipelines was written in Python so we could easily access the Docker Compose
libraries. As we can choose the language which best suites the application to
write, we can sometimes greatly limit development time.



So far, the platform has shown to be maintainable. Since the start, Music-
CRM has been using this platform in its core. The application’s development can
evolve together with mu.semte.ch. It requires responsible development in the
core components, and we have needed to alter the frontend in order to support
new ways of development. Most of this was due to JSONAPI not being stan-
dardised from the get go. Whether applications will turn out to be maintainable
over longer periods of time is still to be proven.

6 Conclusion and next steps

We have shown that combining microservices with semantic technologies offers
clean separation of concerns with decoupled microservices. We started using the
platform in real-world scenarios to build web applications and share code across
projects. It is our intention to further work out the kinks and make the platform
more mature. We also want to provide more support to the user in the form of
templates and addons. A user should get the platform up and running in just
a few steps and be able to configure and extend the platform to his needs with
minimal effort.

To make components reusable across projects, the microservices need to be
cleary documented. Each microservice must specify its functionality, the REST
calls it provides and the related frontend addons. Furthermore the used model
and vocabularies should be documented as well. We are looking at frameworks
like the OpenAPI Specification[23] and DOAP[24] to document the microser-
vices in a structured way. The intention is to build a website that collects all
microservices, the core ones as well as the ones built by the community.

A graph-store with a common ontology is well-suited for sharing informa-
tion. However, the discovery of ontologies is not always that easy. The semantic
web currently lacks a good search engine for discovering ontologies. Currently
LOV and vocab.cc are available, but both services offer a rather limited search
functionality. We intend to search further for solid ontologies for the core of this
architecture. Ideally, an index of ontologies for commonly used services would
exist in an easily searchable manner.

Data changes over time. It is important to recognize this reality. The platform
does currently not keep track of history. Real-world use cases reveil however that
versioning is oftentimes a requirement. The use of a versioned graph would allow
us to merge graphs more easily and present a history of the system over time.

References

1. Ember.js: A framework for creating ambitious web applications. - http://emberjs.
com/ - 2016-03-12

2. AngularJS - Superheroic JavaScript MVW Framework - https://angularjs.org/
- 2016-03-12

3. React Community - https://github.com/reactjs - 2016-03-12
4. mu.semte.ch - https://mu.semte.ch/ - 2016-03-12



5. Microservices Architecture: The Good, The Bad, and What
You Could Be Doing Better - http://nordicapis.com/

microservices-architecture-the-good-the-bad-and-what-you-could-be-doing-better

- 2016-05-01
6. Example voter application (backend) - Backend: https://github.com/

madnificent/voter. Frontend: https://github.com/madnificent/voter-ui

- 2016-05-01
7. JSON API - A specification for building APIs in JSON - http://jsonapi.org/ -

2016-03-12
8. Versteden A., Pauwels E., Papantoniou A., An Ecosystem of User-facing Microser-

vices supported by Semantic Models - Position paper for the 5th International USE-
WOD Workshop, May 31st, 2015, Portoroz, Slovenia - http://usewod.org/files/
workshops/2015/papers/USEWOD15_versteden_pauwels_papantaniou.pdf

9. Ember Data v1.13 released - https://emberjs.com/blog/2015/06/18/

ember-data-1-13-released.html - 2016-05-01
10. mu-identifier: Core microservice for user identification - https://github.com/

mu-semtech/mu-identifier - 2016-03-12
11. mu-dispatcher: Core microservice for dispatching requests to the preferred mi-

croservice - https://github.com/mu-semtech/mu-dispatcher - 2016-03-12
12. mu-semtech GitHub - https://github.com/mu-semtech - 2016-03-12
13. Docker - Build, Ship, and Run Any App, Anywhere - https://www.docker.com/

- 2016-03-12
14. Docker Hub - https://hub.docker.com/ - 2016-03-12
15. Docker Compose - https://docs.docker.com/compose/ - 2016-03-12
16. mu-project: Basis for constructing a new project on top of mu.semte.ch - https:

//github.com/mu-semtech/mu-project/ - 2016-03-12
17. Docker Swarm - https://docs.docker.com/swarm/ - 2016-03-12
18. Three-tier Architecture - https://www.techopedia.com/definition/24649/

three-tier-architecture - 2016-05-01
19. What is the 3-Tier Architecture? - http://www.tonymarston.net/php-mysql/

3-tier-architecture.html - 2016-05-01
20. Graphity - https://github.com/Graphity - 2016-05-01
21. Your Data Stories - H2020 project - http://yourdatastories.eu - 2016-05-01
22. Big Data Europe - H2020 project - big-data-europe.eu - 2016-05-01
23. The OpenAPI Specification Repository - https://github.com/OAI/

OpenAPI-Specification - 2016-03-12
24. RDF schema for describing software projects - https://github.com/edumbill/

doap - 2016-03-12


