
Linking Software Engineering concepts to upper
ontologies

Miguel-Angel Sicilia, Juan J. Cuadrado-Gallego

University of Alcalá, Ctra. Barcelona, km.33.6, 28871
Alcalá de Henares (Madrid), SPAIN

msicilia@uah.es, jjcg@uah.es

Abstract. Recent relevant efforts to shape the knowledge body of the discipline
of Software Engineering have resulted in the crafting of different
conceptualizations and ontologies both for specific or general purposes. But the
underlying semantics of such knowledge representations are not defined
formally, which would eventually require an effort of “harmonization” or
mapping of knowledge structures, and results in non-explicit computational
semantics. This can be avoided or alleviated by the reuse of existing open upper
ontologies. This paper sketches how some of the fundamental Software
Engineering terms can be mapped to the large OpenCyc knowledge base. The
tentative mapping described provides a sound basis for analysis and discussion
between different alternatives to the creation of Software Engineering
conceptualizations.

1 Introduction

The growing interest in ontology-based applications as opposed to systems based on
information models – in the sense given by Welty and Guarino (2001) – have resulted
in a renewed interest in the definition of conceptual models for any kind of domain.
Software Engineering is one of the domains that have received some previous
attention in that direction (Mendes and Abran, 2004; Wille et al., 2003; Sicilia,
Cuadrado and Rodríguez, 2005). The SWEBOK guide provides a foundation for the
development of an ontology for Software Engineering, since it is the result of a
process of domain expert review and validation, and provides references to other
relevant sources. Nonetheless, the process of analysis of the guide to come up with a
logical coherent ontology is by no means a simple process. Many of the entities
described in the guide to the SWEBOK are complex activities that produce
interrelated artifacts. These entities have temporal, material and conceptual facets that
should be clearly defined, and which are well-known in existing upper ontologies and
large commonsense bases. Furthermore, there exist proposals for the standardization
of upper ontologies (Niles and Pease, 2001). In fact, the IEEE P1600.1 Standard
Upper Ontology Working Group (SUO WG1) is working towards that end. Given the
past activity of the IEEE and other organizations in producing standards regarding the

1 http://suo.ieee.org/

vocabulary and concepts of Software Engineering, there exists an opportunity to
exercise and analyze the discipline from the perspective of upper ontology as a
principal case study.
A technique for validating the semantic precision of conceptual schemas is that of
providing explicit links to concepts and relations that are already described in a large
upper ontology. Concretely, we here consider the OpenCyc 0.9 knowledge base. This
is an alternative to analysis techniques as the Bunge-Wand-Weber (Wand and Weber,
1995) that fosters the reuse of existing open knowledge engineering, and the mapping
to modern Web-enabled ontology languages as OWL is a straightforward step.

OpenCyc is the open source version of the Cyc Knowledge Base (Lenat, 1994),
which contains over one hundred thousands atomic terms, and is provided with an
associated efficient inference engine. Cyc uses as its underlying definition language a
variant of predicate calculus called CycL, and it attempts to provide a comprehensive
upper ontology of “commonsense" knowledge.

In the rest of this paper, some of the principal concepts that surround the Software
Engineering discipline are linked to OpenCyc definitions, as an illustration of the
approach.

2. Mapping of core concepts to OpenCyc

Software engineering as any engineering discipline is mainly concerned with how

things should be done. Thus, a large amount of SE theory is related to activities
carried out by agents (the engineers). Further, every activity uses or creates artifacts
of a various kind. A prominent category of such artifacts are models, which pervade
current practice of SE. In what follows, an analysis of the representation of the three
words in bold face above with regards to OpenCyc concepts will be sketched
(ontology concepts are provided in Courier font).

2.1. Activities and activity prescriptions

Software engineering activities as actually enacted should be represented as
dynamic (i.e. temporal) situations, represented by the term Event. Events in
OpenCyc have a temporal extent but also “parts” of any kind (participants, places)
that are modeled as predicates called Roles. Roles in turn can be further specified by
constraints and relations between roles. Further, there are two important role
categories: actor slots and sub-event slots, which respectively model “things
involved” and the hierarchy of events that comprise a higher level one.

Regarding actor slots, they are binary predicates that connect an Event to
SomethingExisting. OpenCyc provides a large number of built-in predicates
that can be reused.

A ontologically different concept related to activities in SE is that of “methods” for
activities, i.e. the normative specification of “blueprints” for potential courses of
activity. These specifications have an intrinsic prescriptive character, so that they
should not be specified as actions, but rather as specifications.

2.2. Artifacts

Artifacts are “at least partially tangible thing which was intentionally created by
an Agent to serve some purpose or perform some function”. SoftwareEngineering
artifacts require further restriction, e.g. created by engineers, as part of an engineering
activity and the like. Some additional restrictions are required; the following is a
rough sketch:

• ComputerDataArtifacts may represent backups or prepared
initialization data as produced by engineering.

• ComputerProgramModule-CW can be assimilated to the notion of
component in a broad sense, including routines. Nonetheless, further
specification of kinds of components is required.

• ComputerCodeSource and ComputerCodeBinary are self-
evident, and there are other categories to represent interpreted code. The
relation to the conceptual work is reified through ComputerProgram-
CW. This category of artifacts has a rather comprehensive representation
in OpenCyc. There are also predicates to relate source to binaries.

2.3. Models

The word model amounts for 297 occurrences in the SWEBOK guide. Model-
Artifact provides the appropriate semantics for the concept: “a collection of
artifacts; a subset of VisualInformationBearingThing. Each element of Model-
Artifact is a tangible object designed to resemble and/or represent some other object,
which may or may not exist tangibly”. The ModelFn function designates all the
models of a given thing, e.g. ModelFn(SoftwareComponent). This is a concrete
characterization of models that seems to match all the uses of model in the SWEBOK.
As information bearing objects, the models are IBTs also, so that their contents can
be represented in a propositional form, through the predicate
containsInfoPropositional-IBT IBT PIT, that links to a propositional
information thing. PITs are in themselves microtheories, thus allowing the definition
in logical terms of the actual contents of the model. This could for example be applied
to develop systems that represent UML diagrams through logics, which will enable a
degree of increased automation.

The Guide to the SWEBOK somewhat differentiates models and artifacts, as in the
Software Design KA “The output of this process is a set of models and artifacts that
record the major decisions that have been taken”, but ontologically this distinction is
irrelevant.

3. Outlook

The mapping of some essential Software Engineering concepts with definitions in
the large OpenCyc knowledge base has been described. This provides a sound
foundation for the engineering of a comprehensive formal ontology of the discipline,
integrating existing fragmentary efforts (Mendes and Abran, 2004; Wille et al., 2003;

Sicilia, Cuadrado and Rodríguez, 2005). The main challenge ahead is that of
coordinating a process of systematic development of a domain ontology for Software
Engineering based on guides as the SWEBOK that provides an epistemologically
adequate representation of current practice and theory.

References

Lenat, D. Cyc: A Large-Scale Investment in Knowledge Infrastructure, Communications of the
ACM 38(11) (1995) 33-38.

Mendes, O., Abran, A. (2004). Software Engineering Ontology: A Development Methodology.
Metrics News, 9, 68-76.

Niles, I., and Pease, A. 2001. Towards a Standard Upper Ontology. In Proceedings of the 2nd
International Conference on Formal Ontology in Information Systems (FOIS-2001), Chris
Welty and Barry Smith, eds, Ogunquit, Maine, October 17-19, 2001.

Sicilia, M.A., Cuadrado, J.J., Rodríguez, D. (2005). Ontologies of Software Artifacts and
Activities: Resource Annotation and Application to Learning Technologies. In Proceedings
of the Seventeenth International Conference on Software Engineering and Knowledge
Engineering

Wand, Y.; Weber, R. (1995) On the deep structure of information systems. Information
Systems Journal (5), 1995, pp. 203-223.

Welty, C. and Guarino, N. Supporting ontological analysis of taxonomic relationships. Data
and Knowledge Engineering 39(1), 2001, pp. 51-74.

Wille, C., Abran, A., Desharnais, J.M., Dumke, R.R. (2003). The quality concepts and
subconcepts in SWEBOK: An ontology challenge, in Proceedings of the 2003 International
Workshop on Software Measurement (IWSM), 113--130.

