
Software quality: concepts and evidences 
 
Luis Fernández Sanz 
Departamento de Sistemas Informáticos 
Universidad Europea de Madrid 
luis.fernandez@uem.es  
 
 
 
Introduction 
 
The concept of software quality is more complex than what common people tend to 
believe. However, it is very popular both for common people and IT professionals. If 
we look at the definition of quality in a dictionary, it is usual to find something like the 
following: set of characteristics that allows us to rank things as better or worse than 
other similar ones. In many cases, dictionaries mention the idea of excellence together 
with this type of definitions. 
 
Certainly, this idea of quality does not help engineers to improve results in the different 
fields of activity. In the world of industrial quality in general, a transition from a rigid 
concept to an adaptive one was performed many years ago. The concept view tend to be 
more close to the traditional idea of beauty: “it is in the eyes of the observer”. So, we 
reject absolute concepts and tend to use customer satisfaction as main inspiration. For 
example, what characteristics are used by customers as indicators of “quality” (i.e. 
excellence): 
 

 Product nature 
 Reputation of raw materials: e.g. marble from Carrara. 
 Manufacturing location: e.g. wine from La Rioja 
 Manufacturing method: e.g. artisans 
 Point-of-sale standing: why does the same beer cost much more at a 

sophisticated restaurant than at the usual pub. 
 Price: “Quality is what expensive things have” 
 Results: direct opinion transmission from one customer to another. 

 
As Crossby told, quality is perhaps something different of what you think. He used the  
analogy between sex and quality (Crossby, 1980): 
 

 Everybody agrees with it 
 Everybody thinks he/she knows everything about it 
 Everybody thinks it is enough to follow his/her intuition 
 Everybody thinks problems are others’ fault 

 
Software quality 
 
Different attempts to define software quality as a complex concept that can be 
decomposed in more detailed characteristics have been presented since 1970s, e.g. 
(McCall et al, 1977) (see Figure 1). The idea was to enable evaluation of quality 
through the evaluation of more detailed characteristics that are supposed to be easy to 
measure or assess. The problem with this work line is that such features are not easy to 
evaluate in a subjective manner or, even, they are not clearly defined. Standardized 



quality models based on this idea, e.g. ISO 9126 (ISO, ), are only useful as source of 
ideas to establish an agreement for better understanding between customer and 
developer because it is not clear what kind of metrics are really validated and feasible 
for a correct measurement of each characteristic. For example, metrics proposed by Mc 
call et al. were clearly obsolete, not validated or simply subjective. 

Figure 1. Decomposition tree of McCall et al. software quality model 
 
Moreover, the different factors or attributes are not independent. For example, high 
values in portability tend to cause low levels of efficiency. There are different positive 
(reinforcement) and negative (counteracting) relationships clearly identified among the 
different attributes in this type of models. The actual trend is the definition of adaptive 
models for measuring software quality like GQM (Basili, 1988) or COQUAMO 
(Kitchenham & Walker, 1989). 
 
Nonetheless, it is usual that real software projects have not enough resources and/or 
efficient planning processes to afford such a big number of different values to be 
monitored. In these cases, organizations prefer to use a more limited concept of 
software quality based on detecting its absence in a system: metrics are based on 
different variations of the basic  number of detected defects in the software application. 
This concept of software quality is well accepted by practitioners and organizations 
because data to be measured is usually collected during project and maintenance activity 
(e.g., defects reported by customers, defects detected during testing, changes controlled 
by configuration management system, etc.). Defect rates ranking is very popular and 
organizations tend to consider what are the standards in industry and which is its 
position (e.g. higher or lower than 1 defect/KLOC). As (Adams, 1984) found out, one of 
the problems of this approach is the fact that not all the defects lead to quality problems 
(i.e. failures): up to 1/3 of the defects after 5000 years of system functioning. 
 



Proposed lines of action 
 
When quality has to be measured, it is important to follow the foundations of every 
measurement activity to avoid mistakes. Measurement can be defined as “the process by 
which numbers or symbols are assigned to attributes of entities in the real world in such 
a way as to describe them according to clearly defined rules” (Fenton & Pfleeger, 1997). 
Attributes can be internal (measurable in terms of the entity itself) or external 
(measurable only with respect to how the entity relates to its environment). Software 
entities may refer to processes, products or resources. Allocation of numbers and 
symbols can be done in a subjective (mainly based on opinions) or objective way; it is 
also possible to distinguish between direct (involves no other attribute or entity) and 
indirect measurement (e.g. defect rate = num.defects/size). 
 
What it is extremely important for assuring appropriate measurement activity is to have 
a clear idea of what are the expected objectives. So, do we think that IQ is really a real 
measure of intelligence or just an indicator of ability to answer specific tests? In the 
case of software, is found defects/time a metric of software quality or is it an indicator 
of quality of testing? Is LOC/time a measure of productivity or of speed of coding? 
 
As someone said “evaluate is to measure; but although a cm is an objective unit it is not 
the same to measure your body to order a dress to a tailor compared with measuring it to 
order your coffin”. It is also important to be aware of the Hawthorne effect, i.e., the 
possibility that expectations tend to alter the collected values due to a change in the 
normal behavior of people who know that is observed. 
 
Having clear objectives helps us to define valid metrics. Validity has not always been 
preserved even in the case of very popular metrics. Basically a valid metric is the one 
for which it is shown that really measures what it claims. One of the basic elements for 
that is the existence of well defined rules of calculating it. For example, depending on 
what definition we adopt for line of code, the same piece of code can experiment 
differences up to 5:1 in the number of LOC. 
 
One promising work line for software measurement is the conceptualization of the 
measurement validity criteria as the preservation of the empirical relationships between 
entities in the real world when values are computed (Fenton & Pfleeger, 1997). Using 
this approach, contributions like the one of (Briand et al., 1996) where basic properties 
of software (like complexity, size, etc.) are characterized to enable the control of 
validity of the measures that claim to measure such properties of a software product. 
 
Conclusions 
 
Different ideas about the concept of software quality and how to evaluate it has been 
presented in this paper. A brief review of different proposals and contributions in this 
area has been also reviewed to offer an overall image of the main challenges to be 
addressed. As a final point of interest, I think that valid and solid measurement is 
essential for software engineering advance because there is a short tradition on 
justifying by empirical means the benefits of proposals. For example, process models 
and standards like CMMi or ISO 9001 have not always demonstrated their value for 
reaching benefits like productivity, quality, etc. Everybody assume that better process 
leads to better product results (by the way, I am sure this is true) but are there enough 



and solid set of real data to support it? Of course, CMMi, at least, has tried to measure 
benefits and quantify the relationship between efforts in process side and benefits. 
Moreover there are other (¿psychological?) benefits: stabilization of processes, etc. The 
same reflection applies to the assumption that better structure leads to better external 
behavior. It is not always a clear relationship. 
 
In summary, I strongly believe that rather than looking for or “buying” silver bullets, we 
should try to explore concepts behind commonly adopted practices in industry to be 
sure that those practices are the best ones (or, at least, beneficial). 
 
References 
 
Adams, E. (1984). Optimizing preventive service of software products. IBM Journal of 
Reserch and Development. 28 (1). 2-14. 
Basili, V.R. and Rombach, H.D. (1988). The TAME Project: towards improvement-
oriented software environments. IEEE Transactions on Software Engineering. 14 (6), 
758-773. 
Briand, L.C., Morasca, S. y Basili, V.R. (1996) "Property-based software engineering 
measurement". IEEE Transactions on software engineering. 22 (1), 68-85. 
Crossby, Philip B. (1980). Quality is Free: The Art of Marketing Quality Certain. New 
York, Mentor Books. 
Fenton, N.E. and Pfleeger, S.L. (1997). Sofwtare metrics. A rigorous and practical 
approach. London, PWS.  
ISO (1991), Software product evaluation. Quality characteristics and guidelines for their 
use, Geneve, author. 
Kitchenham, B. A. and Walker, J. G. (1989). A quantitative approach to monitoring 
software development. Software Engineering Journal. 4 (1), 2-13. 
McCall, J. A., Richards, P. K. and Walters, G. F. (1977). Factors in Software Quality, 
Volumes I, II, andIII, US. Rome Air Development Center ReportsNTIS AD/A-049 014, 
NTIS AD/A-049 015 and NTIS AD/A-049 016, U. S. Department of Commerce. 
 


