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ABSTRACT 
We propose a workflow to be implemented in a new workflows 
architecture of the LearnSphere We present the motivation and 
initial validation of the value of regularizing student-level 
parameters in an individualized Bayesian Knowledge Tracing 
model. Theoretically grounded, regularization of iBKT models, as 
we show, leads to increased model accuracy. 
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1. INTRODUCTION 
Bayesian Knowledge Tracing (BKT) model individualization has 
been an active research topic recently. Individualization is 
accounting for student population variance that may come in 
different forms. One of the ways to individualize BKT is to 
introduce student-specific parameters. The new individualized 
BKT (iBKT) has been shown to fit the data better and even some 
promise, if deployed, to be able to save students time by better 
accounting for personal learning paths [7]. 

One of the toolkits that support iBKT models and is available via 
the LearnSphere workflow is hmm-scalable1. iBKT via hmm-
scalable, as compared to regular BKT [5], splits every BKT 
parameter into per-skill and per-student components and allows a 
subset or all BKT parameters to be individualized. Both student- 
and skill-level parameter are fit with the help one of the gradient-
based approaches including stochastic or conjugate gradient 
descent, or a Lagrange updates method [6]. 

The solvers implemented in the core hmm-scalable utility that 
the LearnSphere iBKT wrapper workflow uses are fitting both 
skill and student parameters in fixed-factor fashion. However, it is 
often advised to treat student-related variables as random factors. 
The logic behind this is that students at hand are sampled from a 
larger population of students [2]. Treating student factors as fixed 
effects could lead to fixed fallacy [4] and deflated generalizability 
of the model. 

In this paper, we propose to take advantage of the regularization 
feature in hmm-scalable. This feature adds a penalty to the 
objective log-likelihood function in the form of the L2 norm. That 
is an approximation of treating the regularized parameter as a 
random factor. The influence of the L2 term is weighted by the λ 
coefficient. The larger the λ, the stronger the effect of the 
regularization. In simpler terms, regularization penalizes deviation 
of parameter values from the centroid value. In regularized 
                                                                    
1 hmm-scalable toolkit, the public version 

https://iedms.github.io/standard-bkt  

regression, the centroid is usually 0, and regularization takes a 
form of scarcity-inducing mechanism. In the case of iBKT, as it is 
implemented in hmm-scalable, an appropriate centroid is 0.5. 
If student-level parameters have a value of 0.5, this effectively 
means no student-level effect on the relevant still parameter. 

Making the right choice of the λ that would lead to an improved 
fit (and, potentially, the generalizability) is a problem in an of 
itself. The hmm-scalable does not support the search for an 
optimal λ directly. We propose to perform this search as part of 
the wrapping LearnSphere workflow.  

2. WORKFLOW METHOD 
2.1 Data Inputs 
The student-parameter-regularizing workflow takes the same data 
inputs with regular BKT workflow. These are integer correctness 
variable (correct encoded as 1, incorrect as 2), student as a 
character factor, the problem as a character factor, and delimited 
skill(s) as character factor.  

2.2 Workflow Model 
The workflow performs a sequence of runs of a chosen iBKT 
model with a set of λ weights for the regularizing L2 parameter 
penalty, where the first value is 0 (the default), and the rest could 
be defined by the user. For example, from 0.1 to 4, with a 0.1 
increment. In this model, the skill parameters are not regularized. 

2.3 Workflow Outputs 
The output of the workflow is built on the standard output of the 
BKT workflow. An array of statistical fit metrics (Log-likelihood, 
AIC, BIC, RMSE, Accuracy) is presented along with the λ weight 
used for the regularization. The main outcome is whether the 
regularization improves the fit of the model, as compared to the 
non-regularized version, and at what λ value. A graphical web-
friendly plot of a selected via drop-down fit metric across all 
tested λ values could help better visualize the effect of the 
regularization. Skill and student level parameters could also be 
printed for the winning model. 

3. DISCUSSION 
As part of pilot-testing the method we propose to be implemented 
as a LearnSphere workflow, we have run a series of iBKT models 
with student-level parameter regularizations for a set of λ weights. 
Initially, we used values from 0 to 6 with a step of 1. Later, we 
added values 0.1 to 0.9 with a step of 0.1, 1.5, 2.5, and 3.5.  

We used the 2010 KDD Cup Challenge Set B (available via PSLC 
DataShop2), the largest available dataset of student learning data. 
                                                                    
2 2010 KDD Cup https://pslcdatashop.web.cmu.edu/KDDCup  



The overall number of student-step transactions in that dataset is 
over 20 million. The data in that dataset was collected by the 
application called Cognitive Tutor. It was donated by Carnegie 
Learning Inc. and contained data of students working on a Bridge 
to Algebra course. 

For each setting, we performed 5 runs of 2-fold student-stratified 
cross-validation. As identified in [4], this setup of the cross-
validation allows for the most potent way to reliably rank 
alternative models when using cross-validation. One of the 
guarantees of this cross-validation approach is appropriately sized 
confidence interval around the accuracy metrics. 

For the sake of selecting the best λ, we used simple average across 
5x2=10 statistical goodness of fit values. We picked RMSE and 
Accuracy as our metrics. Figures 1 and 2 show the plots of the 
RMSE and Accuracy (respectively) for the set of tested λ weights. 

 
Figure 1. λ regularization weights vs. average RMSE 

 
Figure 2. λ regularization weights vs. average Accuracy. 

Although RMSE and Accuracy plots are not entirely in sync: the 
best (lowest) RMSE value corresponds to λ=2.0, and the best 
(highest) Accuracy value corresponds to λ=4.0, it is, arguably, 
appropriate to choose λ=2.0, thus trusting RMSE metric. 

To underline the usefulness of the regularizing student parameters 
in iBKT models, we have performed the model ranking F-test 
described in [4] by making pairwise comparisons between 
multiple student-stratified 2-fold cross-validated models. We have 
used a Majority Class model that always predicted correct 
outcome, a shipped model that used parameters from the deployed 
Cognitive Tutor, a standard BKT model fit by using Expectation-
Maximization (EM) method implemented in hmm-scalable, 
and iBKT non-regularized, and regularized models fit using 
gradient-based Lagrangian updates solver. The results of the 
pairwise comparisons are given in Table 1.  

Table 1. Comparing multiple cross-validated models. 

   p-value of the difference 
Rank Mean Acc.  Ship EM iBKT iBKT λ=2.0 

4 0.86167 MC 0.000 0.000 0.000 0.000 
5 0.85206 Ship  0.000 0.000 0.000 
3 0.87010 EM   0.000 0.000 
2 0.87130 iBKT    0.327 
1 0.87136 iBKT λ=2.0     

   p-value of the difference 

Rank 
Mean 
RMSE  Ship EM iBKT iBKT λ=2.0 

5 0.37192 MC 0.000 0.000 0.000 0.000 
4 0.34095 Ship  0.000 0.000 0.000 
3 0.32061 EM   0.327 0.128 
2 0.32039 iBKT    0.001 
1 0.32027 iBKT λ=2.0     

 

Here we can see that BKT models reliably (with a p-value less 
than 0.001) beat Majority Class and Shipped models both in terms 
of Accuracy and RMSE. In terms of accuracy, iBKT models beat 
standard BKT, while the difference between the best-regularized 
iBKR and non-regularized iBKT is not significant.  

If we look at RMSE, BKT models, again, prevail. There is now 
the statistical difference between iBKT models: regularized iBKT 
model has an edge. Standard BKT model fit using EM is not 
statistically different from either iBKT model in terms of RMSE. 
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