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Abstract

The PIE system aims at providing an environment for creating com-
plex applications of automated first-order theorem proving techniques.
It is embedded in Prolog. Beyond actual proving tasks, also interpo-
lation and second-order quantifier elimination are supported. A macro
feature and a LATEX formula pretty-printer facilitate the construction of
elaborate formalizations from small, understandable and documented
units. For use with interpolation and elimination, preprocessing opera-
tions allow to preserve the semantics of chosen predicates. The system
comes with a built-in default prover that can compute interpolants.

1 Introduction

The PIE system aims at providing an environment for creating complex applications of automated first-order
theorem proving techniques, in examples, experiments, benchmarks, and as background machinery in other
contexts. The system is currently under development, with some major components already functional but
others still on the agenda. The state of the art for practically applying first-order proving techniques is perhaps
best represented by the the TPTP [Sut09, Sut15], which – although designed primarily as a library for testing
theorem provers – supports some aspects of creating complex applications: the Prolog-readable TPTP formula
syntax provides a uniform interface to a variety of systems, proving problems are organized in a way that
facilitates repeatability of testing, utilities for preprocessing are provided, and the classification of problems
according to useful syntactic characteristics is supported. When creating complex applications becomes the
main focus, various further issues arise:

1. Tasks beyond Proving. Aside of theorem proving in the literal sense there are various other related tasks
which share techniques with first-order theorem proving and have interesting applications. Basic such tasks
are model computation, which became popular in knowledge representation as answer set programming, the
computation of first-order interpolants and second-order quantifier elimination.

From a certain point of view, the opening of first-order reasoning to second-order extensions seems
quite natural: Early technical investigations of first-order logic have been accompanied by investigations of
second-order quantifier elimination for formulas with just unary predicates [Lö15, Sko19, Beh22] (see [Cra08];
for a comprehensive presentation of [Beh22] in this context see [Wer15a]). Today there are many known
applications of second-order quantifier elimination and variants of it termed uniform interpolation, forgetting
and projection. Aside of the study of modal logics, most of these applications are in knowledge representation
and include computation of circumscription, representation of nonmonotonic semantics, abduction with
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respect to such semantics, forgetting in knowledge bases, and approaches to modularization of knowledge
bases based on the notion of conservative extension, e.g., [GO92, LR94, D LS97, Wer04, GLW06, GSS08,
GHKS08, LW11, Wer12, Wer13a, KS13, LK14]. Advanced elimination systems are available for description
logics, for example the LETHE system [KS15] as well as further implementations of recent techniques for
forgetting based on Ackermann’s lemma [ZS15, ZS16]. Elimination systems based on first-order logic have
been implemented mainly in the late 1990s [Eng96, Gus96].

Interpolation plays an important role in verification [McM05], where it is used mainly on the basis of
propositional logic extended with respect to specific theories. An application area on the basis of full first-
order logic is database query rewriting [Mar07, NSV10, TW11, BBtC13, BtCT14, HTW15]. It seems that
so far there have been only specialized techniques applied in this context, in contrast to general first-order
provers. Interpolation for first-order logic is supported by Princess [BKRW11b, BKRW11a], as well as in
some versions/extensions of Vampire [HKV10, HHKV12].

2. First-Order Logic as Input and Presentation Format. First-order logic can be considered as close
enough to natural language to be well suited for humans to express applications. (This is quite different
from propositional logic, where the formulas input to SAT solvers are typically the output of some encoding
mechanism of the application problem. Accordingly, in the DIMACS format commonly used as input for SAT
solvers logic atoms are just represented by natural numbers.) Compared to Prolog notation, readability of
first-order formulas can in some cases be improved if functor arguments are not encapsulated by parentheses
and not separated by commas, which however requires predeclaration of functor arities. The textbook
[EFT84], for example, would write pfxy instead of p(f(x), y). Pretty-printing, where formula structure is
reflected in indentation substantially facilitates readability of longer formulas. LATEX provides professional
formula layout and seems the format of choice for the presentation of formalizations.

The TPTP syntax allows formulas to be read in by Prolog systems, which is very convenient for Prolog
implementations of further formula manipulation. The TPTP tools also include a pretty-printer for that
syntax. There are two subtle mismatches of the TPTP syntax and Prolog: TPTP formula variables are
represented as Prolog variables, although their scoping is different (quantifier arguments vs. clauses); in
the ISO Prolog standard unfortunately the character ! is, unlike ?, not of type “graphic”, effecting that
universal and existential TPTP quantifier symbols, which are based on ! and ?, can not be handled in
exact analogy, and that a != b has to be read in as =(!(a),b).

3. Stepwise Construction of Larger Formalizations. Comprehensibility of even modest-sized formal-
izations can be improved greatly by using labels, speaking names, for the involved subformulas. In analogy
to procedure names, labels are particularly versatile if they can be used with parameters. Such labels also
facilitate the re-use of formulas and indicate similarities of related formalizations.

The TPTP requires symbolic names as formula identifiers whose scope is the respective proving problem.
They typically appear in proof presentations but are not used to specify the composition of problems from
formulas. Shared axiom sets can be expressed in the TPTP by means on an include directive on the file
level.

4. Flexibility of Document Granularity. Each proving problem in the TPTP is represented by a file whose
name is formed according to a pattern such that application domain and problem format are indicated. While
this is very helpful for an archive and testing library, for the development of formalizations it seems more
beneficial to follow the traditional approach of the AI programming languages like Lisp and Prolog, which
do not tie document granularity – files – with semantic or abstract structural units. However, support for
namespaces and symbol redefinition is in such language systems commonly related to files.

5. Integration of Natural Language Text. In many cases it is useful to accompany formalizations with
explanatory text. Possibly an interleaved combination of formal and informal material, a form of “literate
formalizing”, is most adequate for complex formalizations.

TPTP problem files have a structured header that includes an obligatory field for an English one-line
description as well as an optional field for a longer description. Also a field for bibliographical references is
provided.

6. Sustainability and Repeatability. The usability of documents with complex formalizations should not
be limited to a narrow context. Involved mechanized tasks must be repeatable. That a proving problem
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can be solved not just depends on the choice of the proving system but also on its particular configuration,
prone to fail after small changes. This implies that system configurations known to work have to be precisely
recorded.

7. Benchmarks as Side Product. For the computational tasks involved in a complex formalization, it
should be possible to generate benchmark documents that can be evaluated independently and in repro-
ducible ways, for example as TPTP problems files.

8. Programming Language Embedding. Embedding in a programming language seems useful: Pro-
gramming is required to express advanced formula manipulations, including preprocessing or generation of
formulas according to repeatedly occurring patterns and to specify flows of control concerning the involved
proving and related tasks, as well as postprocessing of their outputs. Prolog, the original basis of the TPTP,
seems well suited, in particular since it supports terms as readable and printable data structures that can be
immediately used to represent logic formulas. In addition, specifically the SWI Prolog system comes with
very good interfaces to XML and RDF, which are common as exchange formats for large fact bases.

9. Integration of Large Axiom Sets and Fact Bases. Some applications, in particular in common sense
reasoning, include large sets of axioms, such as, for example, the excerpts of CYC included in the TPTP, or
fact bases such as YAGO, DBPedia and GND, which are available in RDF format. Naming of axioms/facts
is irrelevant for these. A human user typically sees only a small fraction of them that is exposed in a proof.

TPTP v6.3.0 includes five subsets of CYC ranging form 100 up to more than 3 million axioms, where
only the second smallest with 8000 axioms was used in the 2015 CASC-25. Seemingly that is the one
that can be handled without any special mechanisms by most modern first-order provers. With LTB the
CASC also provides a dedicated division for problems with large shared axiom sets, currently extracted from
libraries formalized with interactive proving systems. In the competition, provers are allowed to perform
offline tuning with the shared axioms and example problems.

These issues are addressed by the PIE system with the features and components described in Sect. 2. In the
conclusion, Sect. 3, some related work is briefly discussed and an outlook is given. An example that illustrates
the use of PIE is provided as Appendix A. Development snapshots of the system with some further examples
can be obtained under GNU General Public License from

http://cs.christophwernhard.com/pie/.

2 Features and Components of the PIE System

2.1 Prolog Embedding and Interfaces to Other Systems

The PIE system is the succesor of ToyElim [Wer13b], which is based on propositional logic and has been used
in experiments with applications of second-order operator elimination, such as forgetting, abduction and non-
monotonic reasoning semantics. Both systems are implemented in SWI Prolog. To cope with large formulas, on
occasion destructive operations like setarg are used but hidden behind an hash table interface.

It is intended to use PIE from the SWI Prolog environment. Thus, the functionality of the system is provided
essentially in form of a library of Prolog predicates. The basic formula syntax of PIE differs from the TPTP
syntax (see also Sect. 1, point 2): A formula with quantifiers is represented by a Prolog ground term. For
conjunction and disjunction the operators , and ;, as in Prolog, are used. Implication is represented by ->

(unfortunately this operator has due to its role as “if-then-else” in Prolog a stronger default precedence than ;).
A clausal formula is represented as list of lists of literals, where variables are Prolog variables. Conversions to and
from TPTP first-order and clausal forms as well as Otter/Prover9/Mace4 syntax are provided. For propositional
logic and quantified Boolean formulas there are conversions to and from DIMACS and QDIMACS, respectively.
Call-interfaces for proving tasks to provers accepting the TPTP or the Prover9 format as well as to SAT and
QBF solvers are provided. For propositional elimination tasks there is also a special DIMACS -based interface
to Coprocessor [Man12], a SAT preprocessor that can be configured to perform elimination tasks.

The PIE system includes the Prolog-based first-order prover CM, described further in Sect. 2.4, which is thus
immediately available in a lightweight way, without detour through the operation system and without further
installation effort. Proofs returned by CM can be directly processed with Prolog and allow interpolant extraction.
The internals of the prover are easy to modify for experimenting. As a second possibility for interpolation tasks,
an interface to Princess [BKRW11b] is envisaged.
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2.2 Macros

A macro facility is provided, where the macros can have parameters and expand to first- or second-order formulas.
In this way, a macro name can serve not just as a formula label but, more generally, can be used within another
formula in subformula position, possibly with arguments.

Pattern matching is used to choose the effective declaration for expansion, allowing structural recursion in
macro declarations. An optional Prolog body in a macro declaration permits expansions involving arbitrary
computations. Utility predicates intended for use in these bodies are provided for common tasks, for example,
determining the predicates in a formula after expansion. With a macro declaration, properties of its lexical
environment, in particular configuration settings that affect the expansion, are recorded.

Macros provide a convenient way to express properties of predicates, e.g., transitivity, abstractly, and also to
express more complex application patterns that can not be stated as definitions within second-order logic unless
predicates in argument position would be permitted. Various practically useful computations can be considered
as elimination of second-order operators, in particular, literal forgetting (a form of predicate quantification
that only affects predicate occurrences with negative or positive polarity), projection (which is like predicate
quantification, except that the predicates that are not quantified – whose semantics is to be retained – are made
explicit) and circumscription. The macro mechanism allows to use dedicated operator notation for these on the
user level, whereas on the system level predicate quantification is the only second-order operator that needs to
be supported.

2.3 LATEX Document Generation

A formula pretty-printer is available that outputs Prolog-readable syntax as well as LATEX. In addition to formula
indentation, the LATEX pretty-printer converts numbers and single characters separated by an underscore at the
end of Prolog functor names to subscripts in LATEX. A brief syntax as indicated in Sect. 1, point 2, is optionally
available for in- and output of formulas.

Prolog-readable files with macro declarations can be translated to LATEX documents which contain the pretty-
printed declarations, all text within specially marked comments, and all outputs produced by calls wrapped in
a special Prolog predicate that indicates evaluation at “printtime”. Utility predicates for tasks like proving,
interpolation and elimination are provided that pretty-print solutions in LATEX at “printtime”, and in Prolog
when invoked normally.

2.4 Included Prolog Technology Theorem Prover CM

The included prover CM was originally written in 1992, based on [Sti88] but as compiler to Prolog instead of
Lisp. The underlying calculus can be understood as model elimination, as clausal tableau construction, or as the
connection method. The leanCoP prover [Ott10], also implemented in Prolog, is based on the same calculus and
regularly takes part in the CASC competitions. Re-implementations of leanCoP have recently found interest to
study new techniques [Kal15, KU15]. A conceptual difference to leanCoP is that CM proceeds in a two-step
way, by first compiling the proving problem. This makes the prover less flexible at runtime, but the possibility
to inspect the output of the compiler on its own contributes to robustness and facilitates experimenting with
modifications. The prover had been revised in 1997 [DW97] and recently in 2015 where it has been ported to
SWI Prolog, combined with some newly implemented preprocessing operations and improved with the problems
of the 2015 CASC competition, CASC-25 , taken as yardstick. For the CASC-25 problems in the first-order no
equality (FNE) category it performs better than leanCop and iProver Modulo but worse than CVC4. For the
CASC-25 problems in the first-order with equality (FEQ) category it performs significantly worse than leanCop
but better than iProver Modulo. More information on the prover and the evaluation details are available at
http://cs.christophwernhard.com/pie/cmprover/.

2.5 Preprocessing with Semantics Preservation for Chosen Predicates

A number of implemented preprocessing operations is included, most of them currently for clausal inputs.
While some of these preserve equivalence, for example conventional CNF transformation (if function introduc-
tion through Skolemization is disregarded), others preserve equivalence just with respect to a set of predicates
p1, . . . pn, that is, inputs F and outputs G satisfy the second-order equivalence

∃q1 . . . ∃qm F ≡ ∃q1 . . . ∃qmG, (1)
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where q1, . . . , qm are all involved predicates with exception of p1, . . . pn. Such conversions clearly also preserve
equi-satisfiability, which corresponds just to the special case where n = 0. Keeping track of the predicates
p1, . . . , pn whose semantics is to preserve is needed for preprocessing in applications like interpolation and second-
order quantifier elimination. (The Riss SAT solver and the related preprocessor Coprocessor [Man12] also support
this.) Some preprocessing conversions allow, moreover, to keep track of predicate semantics with respect to just
their occurrences with positive or negative polarity, which is useful for Lyndon interpolation (Sect. 2.6) and
literal forgetting (Sect. 2.2).

Implemented preprocessing methods that preserve equivalence with respect to a given set of predicates include
a variant of the Plaisted-Greenbaum transformation, a structural hashing transformation that identifies two
predicates (or one predicate with the negation of another) in the case where both have equivalent non-recursive
and easily detectable “semi-definitions” (the, say, positive “semi-definition” of the predicate p is obtained by
taking all clauses containing a positive literal with predicate p and removing these literals, equivalence (4) below
can be used to justify this transformation semantically), and elimination of predicates in cases where this does
not lead to a substantial increase of the formula size.

2.6 Support for Interpolation

A Craig interpolant for two given first-order formulas F and G such that (F → G) is valid is a first-order
formula H such that (F → H) and (H → G) are valid and H contains only symbols (predicates, functions,
constants, free variables) that occur in both F and G. Craig’s interpolation theorem ensures the existence of
such interpolants. The PIE system supports the computation of Craig interpolants from closed clausal tableaux
with a variant of the tableau-based interpolant construction method from [Smu95, Fit95]. (It seems that this
method has not been reviewed in the recent literature on interpolation for first-order logic in automated systems,
e.g., [HKV10, BKRW11a, BJ15].)

Suitable clausal tableaux are constructed by the CM prover. Interpolant construction can there be done
entirely by pre- and postprocessing, without requiring alterations to the core prover. The preprocessing includes
simplifications as outlined in Sect. 2.5. Also the Hyper hypertableau prover [PW07] produces proof terms that
can be converted to tableaux, but this is not fully worked out in the current implementation.

The constructed interpolants strengthen the requirements for Craig interpolants in that they are actually
Lyndon interpolants, that is, predicates occur in them only in polarities in which they occur in both of the two
input formulas. Symmetric interpolation, a generalization of interpolation described in [Cra57, Lemma 2] and
called symmetric, e.g., in [McM05, Sect. 5], is supported, implemented by computing a conventional interpolant
for each of the input formulas, corresponding to the induction suggested in [Cra57]. Handling of functions (with
exception of individual constants) is not supported in the current implementation. It seems possible to implement
this by a relational translation of the functions that is reversed on the output.

2.7 Support for Second-Order Extensions to First-Order Logic

In some cases second-order formalizations are convertible to first-order logic but more concise than their first-order
counterparts. This suggests to use preprocessors that produce first-order outputs to handle such second-order
inputs. The following equivalence is analogous to the familiar effect of Skolemization of individual variables
quantified by outermost quantifiers but applies to predicate variables:

∃p1 . . . ∃pn F [p1, . . . , pn] |= ∀q1 . . . ∀qmG[q1 . . . , qm] iff F [p′1, . . . , p
′
n] |= G[q′1 . . . , q

′
m], (2)

where F [p′1, . . . , p
′
n] is obtained from F [p1, . . . , pn] by replacing all occurrences of predicates pi for 1 ≤ i ≤ n with

fresh predicates p′i and, analogously, G[q′1 . . . , q
′
m] from G[q1 . . . , qm] by replacing qi for 1 ≤ i ≤ m with fresh q′i.

The left side of (2) is a second-order entailment, the right side a first-order entailment. This pattern occurs in the
characterization of definability and computation of definientia by interpolation (see Appendix A for an example),
where advantages of the second-order formulation are that predicate renaming is hidden by quantification and
that a relation to the strongest necessary and weakest sufficient condition [Lin01, D LS01, Wer12], which are
essentially second-order concepts, is made explicit.

Moving second-order quantifiers outward can be necessary to achieve a form matching the left side of (2).
Aside of the equivalence preserving quantifier movement operations familiar from first-order quantifiers, the
following second-order equivalence, “Ackermann’s quantifier switching”, due to [Ack35b] can be useful there:

∀x∃pF [pt1, . . . , ptm] ≡ ∃q∀xF [qxt1, . . . , qxtm], (3)
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where F [pt1, . . . , ptm] is a second-order formula in which x only occurs free and p is a predicate of arity n ≥ 0 with
exactly the m indicated occurrences, instantiated with n-ary argument sequences t1 to tm and F [qxt1, . . . , qxtm]
is like F [pt1, . . . , ptm] except that the occurrences of p are replaced by occurrences of a fresh predicate q of
arity n + 1, applied on the original argument sequences ti prepended by x. Applied in the converse direction
than displayed here, the equivalence (3) can help to facilitate second-order quantifier elimination by simplifying
the argument formula of the predicate quantifier, leading for example to an elimination-based decision method
for the description logic ALC [Wer15b]. The current implementation of PIE includes automatic handling of
second-order quantifiers in proving tasks according to (2). More advanced preprocessing is planned.

2.8 Support for Second-Order Quantifier Elimination

Second-order quantifier elimination means to compute for a given formula with second-order quantifiers, that is,
quantifiers upon predicate or function symbols, an equivalent first-order formula. (For functions an arity > 0,
in contrast to individual constants, is assumed here.)

For Boolean quantifier elimination, that is, second-order quantifier elimination on the basis of propositional
logic, several methods were already available in the ToyElim system: expanding subformulas with the Shannon
expansion followed by simplifications (a more advanced version of this method is described in [Wer09]), and
for clausal formulas a resolution-based method as well and a call-interface to Coprocessor [Man12], a SAT
preprocessor that can be configured to perform resolution-based elimination. For first-order logic, the PIE
system currently includes a variant of the DLS algorithm [D LS97], which is based on Ackermann’s Lemma, the
following equivalence due to [Ack35a]:

∃p (∀x px→ G[x]) ∧ F [pt1, . . . , ptn] ≡ F [G[t1], . . . , G[tn]], (4)

where p does not occur in G[x] and does occur in F in exactly the n indicated occurrences which all have
positive polarity, and F [G[t1], . . . , G[tn]] is obtained from F [pt1, . . . , ptn] by replacing all occurrences of p with
occurrences of G[x] in which x is instantiated to the respective argument ti of p. (It is assumed that x does not
occur bound in G[x].) The lemma obviously also holds in a dual version, where the implication is (∀x px← G[x])
and the occurences in F all have negative polarity. It can be straightforwardly generalized to predicates p with
more than a single argument.

The improvement of the second-order quantifier elimination techniques and their integration with the other
supported tasks belong to the major issues for the next development steps.

3 Conclusion

Concerning related work based on first-order proving, the TPTP had already been mentioned in many specific
contexts. For developing certain kinds of advanced and complex mathematical proofs in a human-assisted way,
some first-order systems, notably Otter and Prover9/Mace4, alone seem suitable by providing control features
such as weighting and hints. The most ambitious approach for a working environment around first-order provers
so far seemed to be the ILF project in the 1990s, targeted at human users and mathematical applications. It
was centered around an advanced proof conversion with LATEX presentation in textbook style [DGH+94, Dah98].
Further goals were a mathematical library based on Mizar and an embedding into the Mathematica environment
[DW97, DHHW98]. The goals of PIE are much more modest. The main focus is not on proofs but on formulas,
possibly reduced by elimination and normalized in certain ways. In the conception of the ILF Mathematical
Library there was a somewhat ad hoc pragmatic break between syntactic preselection of possibly relevant axioms
and their semantic processing by provers. It is the hope that second-order techniques justify a more thoroughly
semantic approach to modularization and retrieval from formalized knowledge bases.

It is planned to use PIE embedded into another Prolog-based system that provides knowledge based support
for scholarly editing [KW16a, KW16b]. The first envisaged application there is to control the preprocessing of
RDF fact bases through definienda obtained by interpolation.

As already indicated in Sect. 2.8, the extension of the facilities for second-order quantifier elimination will
be a main issue for the next development steps of PIE . Aside of DLS, the second major approach to second-
order quantifier elimination is the resolution-based SCAN algorithm. A variant of this has also been already
implemented in PIE but mainly for abstract investigations, without expectation to compete with possible im-
plementations based on dedicated resolution provers. DLS is known to be complete (i.e. terminate successfully)
exactly for inputs that satisfy a certain syntactic condition [Con06]. Orthogonal to that condition, there are
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further cases with known terminating methods, for example, formulas with only unary predicates [Lö15, Beh22]
(see also [Wer15b]), “semi-monadic” formulas [Wer15b], and the case where explicitly given ground atoms are
“forgotten” [LR94]. Various elimination techniques have thus to be combined for practical application, in a way
that ensures completeness for known cases.

A related topic for future research is the exploration of relationships between interpolation and elimination.
For example, the objective of one of the preprocessing steps of DLS is to decompose a given formula into a
conjunction A ∧ B where A contains the predicate p to eliminate just in occurrences with negative polarity
and B just with positive polarity, approximately matching the conjunction in the left side of (4). Symmetric
interpolation can be used to solve this step in a complete way, that is, whenever there is a decomposition into
such A and B, then one is found. Other parallels between interpolation and elimination concern the notion of
conservative extension, a relationship between formulas that can be expressed as entailment of an existential
second-order formula. For the special case of definitional extension (see e.g., [Hod97]), also if the extension is
not given in the syntactic form of explicit definitions, the corresponding task can be expressed by first-order
reasoning based on interpolation.

To sum up, the PIE system tries to supplement what is needed to create applications with techniques of
automated first-order proving techniques, not solely in the sense of mathematical theorem proving but considered
as general tools of information processing. The main focus are formulas, as constituents of complex formalizations
and as results of elimination and interpolation. Special emphasis is made on utilizing some natural relationships
between first- and second-order logics. Key ingredients of the system are macros, LATEX prettyprinting and
integration into a programming environment.
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[HHKV12] Kryštof Hoder, Andreas Holzer, Laura Kovács, and Andrei Voronkov. Vinter: A Vampire-based
tool for interpolation. In APLAS 2012, volume 7705 of LNCS, pages 148–156. Springer, 2012.
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A Example Document

The following pages illustrate the user view on the PIE system with the rendered LATEX output and the corre-
sponding Prolog-readable input document of a short example. Further examples are included with the system
distribution and can be inspected on the system Web page.

A.1 Output of the Example

PIE Example Document

1 Projection and Definientia

project(S ,F )

Defined as

∃S1 F ,

where

S2 := free_predicates(F ),
S1 := S2 \ S .

definiens(G ,F ,S )

Defined as

project(S , (F ∧G))→ ¬project(S , (F ∧ ¬G)).

2 Obtaining a Definiens with Interpolation
We specify a background knowledge base:

kb1

Defined as

∀x (qx → px ) ∧ (px → rx ) ∧ (rx → qx ).

To obtain a definiens of ∃x px in terms {q, r} within kb1 we specify an implication
with the definiens macro:

1
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ex1

Defined as

definiens((∃x px ), kb1 , [q, r]).

We now invoke a utility predicate that computes and prints for a given valid impli-
cation an interpolant of its antecedent and consequent:
Input: ex1 .
Result of interpolation:

∃x qx .

Before we leave that example, we take a look at the expansion of ex 1:

(∃p (∀x (qx → px ) ∧ (px → rx ) ∧ (rx → qx )) ∧
(∃x px )) →

¬(∃p (∀x (qx → px ) ∧ (px → rx ) ∧ (rx → qx )) ∧
¬(∃x px )).

And we invoke an external prover (the E prover) to validate it:
This formula is valid: ex1 .

3 Obtaining the Strongest Definiens with Elimination
The antecedent of the implication in the expansion of definiens specifies the strongest
necessary condition of G on S within F . In case definability holds (that is, the impli-
cation is valid), this antecedent denotes the strongest definiens. In the example it has
a first-order equivalent that can be computed by second-order quantifier elimination.

ex2

Defined as

project([q, r], (kb1 ∧ (∃x px ))).

Input: ex2 .
Result of elimination:

(∀x ¬rx ∨ qx ) ∧
(∀x ¬qx ∨ rx ) ∧
(∃x rx ).

2
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A.2 Source of the Example

/** \title{\textit{PIE} Example Document} \date{} \maketitle */

:- use_module(folelim(support_scratch)).

:- set_info_verbosity(50).

:- ppl_set_verbosity(7).

/** \section{Projection and Definientia} */

def(project(S,F)) :: ex2(S1, F) ::-

mac_free_predicates(F, S2),

mac_subtract(S2, S, S1).

/* mac_free_predicates/2 and mac_subtract/2 are utility functions

for use in macro definitions

*/

def(definiens(G,F,S)) ::

project(S, (F , G)) -> ~project(S, (F, ~(G))).

/** \section{Obtaining a Definiens with Interpolation} */

/**

We specify a background knowledge base:

*/

def(kb_1, [syntax=brief]) ::

all(x, ((qx->px), (px->rx), (rx->qx))).

/**

\bigskip

To obtain a definiens of $\exists x\, \f{p}x$ in terms $\{q, r\}$ within

$\mathit{kb_1}$ we specify an implication with the $\mathit{definiens}$ macro:

*/

def(ex_1, [syntax=brief]) ::

definiens(ex(x, px), kb_1, [q,r]).

/**

\bigskip

We now invoke a utility predicate that computes and prints for a given valid

implication an interpolant of its antecedent and consequent:

*/

:- ppl_printtime(ppl_ipol(ex_1)).

/**

\bigskip

Before we leave that example, we take a look at the expansion of

$\mathit{ex}_1$:

*/
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:- ppl_printtime(ppl_form(ex_1, [expand=true])).

/**

And we invoke an external prover (the \textit{E} prover) to validate it:

*/

:- ppl_printtime(ppl_valid(ex_1, [prover=tptp(eprover)])).

/** \section{Obtaining the Strongest Definiens with Elimination} */

/**

The antecedent of the implication in the expansion of $\mathit{definiens}$

specifies the strongest necessary condition of $G$ on $S$ within $F$. In case

definability holds (that is, the implication is valid), this antecedent denotes

the strongest definiens. In the example it has a first-order equivalent

that can be computed by second-order quantifier elimination.

*/

def(ex_2, [syntax=brief]) ::

project([q,r], (kb_1, ex(x, px))).

:- ppl_printtime(ppl_elim(ex_2)).

:- ppl_set_source.

:- mac_install.
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