
Case Studies on Extracting the Characteristics
of the Reachable States of State Machines

Formalizing Communication Protocols with
Inductive Logic Programing

Dung Tuan Ho∗, Min Zhang∗∗, and Kazuhiro Ogata∗

∗Japan Advanced Institute of Science and Technology (JAIST)
{dung.ho,ogata}@jaist.ac.jp

∗∗East China Normal University (ECNU)
zhmtechie@gmail.com

Abstract. A distributed system DS can be formalized as a state ma-
chine M and many desired properties of DS can be expressed as invari-
ants of M . An invariant of M is a state predicate p of M such that p
holds for all reachable states of M . To verify that DS enjoys a desired
property, namely to prove that p is an invariant of M , we often need
to find other invariants as lemmas, which is one of the most intellectual
activities in Interactive Theorem Proving (ITP). For this end, our expe-
riences on ITP tell us that it is useful to get better understandings of the
reachable states RM of M . We report on case studies in which Progol,
an Inductive Logic Programming (ILP) system, has been used to extract
the characteristics of the reachable states of state machines formalizing
communication protocols. The case studies demonstrate that ILP has
potential abilities to extract the characteristics of RM .

Keywords: Inductive Logic Programming, Interactive Theorem Prov-
ing, Invariant, Lemma, Progol, State Machine, Reachable State

1 Introduction

A state machine M consists of a set S of states that includes the initial states I
and a binary relation T over states. (s, s′) ∈ T is called a transition. Reachable
states RM of M are inductively1 defined as follows: I ⊆ RM , and if s ∈ RM

and (s, s′) ∈ T , then s′ ∈ RM . A distributed system DS can be formalized as
M and many desired properties of DS can be expressed as invariants of M . An
invariant of M is a state predicate p of M such that p holds for all s ∈ RM .

To prove that p is an invariant of M , it suffices to find an inductive invariant
q of M such that q(s)⇒ p(s) for each s ∈ S. An inductive invariant q of M is a
state predicate of M such that (∀s0 ∈ I) q(s0) and (∀(s, s′) ∈ T) (q(s)⇒ q(s′)).
Note that an inductive invariant of M is an invariant of M but not vice versa.

1 Note that “induction” is used to refer to two different meanings: one from machine
learning and the other from mathematical induction.

33

Finding an inductive invariant q (or conjecturing a lemma q) is one of the
most intellectual activities in ITP2. This activity requires human users to pro-
foundly understand the system under verification or M formalizing the system
to some extent. The users must rely on some reliable sources that let them get
better understandings of the system and/or M to conduct the non-trivial task,
namely lemma conjecture. For this end, our experiences on ITP tell us that it is
useful to get better understandings of RM . Some characteristics of RM can be
used to systematically construct a state predicate qi that is a part of q.

s ∈ S is characterized by some values that are called observable values.
Based on our experiences on ITP, the characteristics of RM are correlations
among observable values of the elements of RM . Generally, the number of the
elements of RM is unbounded and then a huge number of reachable states are
generated from M . The task of extracting correlations among a huge number of
data (reachable states in our case) is the role of Machine Learning (ML).

We have conducted two case studies on Alternating Bit Protocol (ABP, a
simplified version of Sliding Window Protocol used in TCP) and Simple Com-
munication Protocol (SCP, a simplified version of ABP) using a framework in
which Progol, an ILP system, has been mainly used to extract some character-
istics of the reachable states of their state machines formalizing the protocols.
Before the two case studies reported in this paper, we (especially the third au-
thor) had conducted verification case studies in which it is proved that both
protocols enjoy what is called the reliable communication property that when-
ever the current data to be delivered is i, the data upto i or i − 1 have been
successfully delivered to the receiver from the sender without any duplications
nor drops. Through those verification case studies, we drew four possible reach-
able state patterns (see Fig. 5) for SCP and six possible reachable state patterns
(see Fig. 6) for ABP. Those state patterns can be used as oracles for judging if
learned hypotheses are reasonably good.

The rest of the paper is organized as follows. Sect. 2 introduces our moti-
vation together with some background knowledge of systems verification with
ITP and Sect. 3 briefly shows the verification process on the case studies. Sect. 4
describes our framework that is a combination of the tools used to construct
an ILP input from a system specification that is suitable for a theorem prover.
Sect. 5 summaries the results on some experiments for the case studies using our
framework to extract the characteristics of RM with ILP. Sect. 6 mentions some
related work. Sect. 7 concludes the paper and mentions some future directions.

2 Preliminary

Systems verification is a research area aiming at rigorously checking if systems
satisfy desired properties. ITP is a formal verification technique in which mathe-
matical models are made for systems and desired properties are treated as theo-

2 q may be in the form q1∧. . .∧qn. Each qi may be called a lemma and is an invariant of
M if q is an inductive invariant of M , although qi may not be an inductive invariant
of M .

34

rems of the mathematical models. State machines are used as such mathematical
models. For example, it is possible to check if an e-commerce protocol satisfies
the property that if an acquirer authorizes a payment, then both the buyer
and seller concerned always agree on it [1]. Logics, theories, techniques and tools
for theorem proving have been advanced a lot, e.g. logical decision procedures
used in SMT [2]. However, some non-trivial interactions between human users
and theorem provers are still needed to conduct proofs that non-trivial state
machines enjoy non-trivial properties. One of the most intellectual activities in
such interactions is to conjecture lemmas.

To formally verify that a system satisfies a desired property with ITP, the
system is first formalized as a state machine M that is described in a formal
specification language. A state predicate p is described in the same or a different
specification language for the property. An interactive theorem prover is used
to prove that p is an invariant of M . We use a proof score approach to systems
verification called the OTS/CafeOBJ method3, in which CafeOBJ, an algebraic
specification language and system used as a specification language for M and
p and also as an interactive theorem prover. There are three main activities in
the OTS/CafeOBJ method to conduct ITP: application of simultaneous struc-
tural induction (SSI), case analysis (CA) and use of lemmas (including lemma
conjecture).

Let us consider a mutual exclusion protocol called TAS as an example. TAS
written in an Algol-like language is shown in Fig. 1 (a). TAS uses lock to con-
trol processes such that there is at most one process in Critical Section (or at
cs). Initially, lock is false and each process is in Remainder Section (or at rs).
test&set(b) atomically sets b true and returns false if b is false, and just returns
true otherwise. TAS is formalized as a state machine MTAS whose transitions are
depicted in Fig. 1 (b) and (c). The arrow on which tryx and [b = f] are attached
is interpreted as follows: if process x is at rs and b is false in a given state, then x
moves to cs and b is set true. The arrow on which exitx is attached is interpreted
as follows: if process x is at cs, then x moves to rs and b is set false. Note that
transitions are declared in terms of equations in the OTS/CafeOBJ method.
One desired property TAS should enjoy is the mutual exclusion property. Let
mx(s, x, y) be (pc(s, x) = cs ∧ pc(s, y) = cs ⇒ x = y), where s is a state x, y
are process identifiers and pc(s, x) is the location (rs or cs) where process x is
in state s, and let mx(s) be (∀x, y ∈ Pid) mx(s, x, y), where Pid is the set of all
process identifiers. To verify that TAS enjoys the property, all we have to do is
to prove that mx(s) is an invariant of MTAS.

Fig. 2 shows a snip of a proof tree that mx(s) is an invariant of MTAS, al-
though proofs are written as texts in the OTS/CafeOBJ method. Given a state
s and a process identifier k, try(s, k) is the state obtained by applying transi-
tion tryk in s, exit(s, k) is the state obtained by applying transition exitk in s,
and lock(s) is the Boolean value stored in variable lock in s. SSI on s is first
used to split the initial goal into three sub-cases. What to do for the three sub-

3 Due to the space limitation, we do not explain the OTS/CafeOBJ method in detail.
Please refer to [3, 4] for the OTS/CafeOBJ method

35

Fig. 1. TAS and a state machine MTAS formalizing TAS

cases is to show mx(s0, i, j), mx(s, i, j) ⇒ mx(try(s, k), i, j) and mx(s, i, j) ⇒
mx(exit(s, k), i, j), respectively, where s0 is an arbitrary initial state, s is an ar-
bitrary state, and i, j, k are arbitrary process identifiers. CA is then repeatedly
used until what to show reduces either true or false. Any case in which what
to show reduces true is discharged. For any case in which what to show reduces
false, we need to conjecture lemmas4. Let us consider the case marked Case A
in Fig. 2 in which mx(s, i, j) ⇒ mx(try(s, k), i, j) reduces false. Therefore, Case
A needs a lemma. Let lem1(s, i) be such a lemma. We will soon describe how
to conjecture the lemma. lem1(s, i) ⇒ (mx(s, i, j) ⇒ mx(try(s, k), i, j) reduces
true, discharging Case A, provided that we prove that (∀x ∈ Pid) lem1(s, x) is
an invariant of MTAS. The proof needs mx(s, i, j) as a lemma. This is why we
use simultaneous structural induction.

Let P and Q be the sets of states that correspond to predicates p and q,
respectively. S, I, RM , P and Q can be depicted as shown in Fig. 3. Proving
that p is an invariant of M is the same as proving R ⊆ P . Let (s, s′) ∈ T be
an arbitrary transition. In each induction case or a subcase of each induction
case, all needed is basically to show p(s) ⇒ p(s′) so as to prove that p is an
invariant of M . There are four possible situations: (1) s, s′ 6∈ P , (2) s 6∈ P and
s′ ∈ P , (3) s, s′ ∈ P , and (4) s ∈ P and s′ 6∈ P. p(s) ⇒ p(s′) holds for (1), (2)
and (3), but does not for (4). To complete the proof that p is an invariant of
M , we need to know s′ 6∈ RM for (4), namely that s’ is not reachable for (4).
To this end, we need to conjecture a lemma q such that q does not hold for s’.
Case A in Fig. 2 is an instance of (4). Case A is characterized with pc(s, k) = cs,
lock(s) = false, i 6= k, j = k, and pc(s, i) 6= cs (that are attached to the path to
Case A from the root), from which we can systematically conjecture the following
lemma: ¬(pc(s, k) = rs ∧ ¬lock(s) ∧ i 6= k ∧ j = k ∧ pc(s, i) = cs). This lemma
could be used to discharge Case A, but lemmas should be shorter because we
need to prove that lemmas are invariants of M . Any state predicate that implies
the lemma could be a lemma, one of which is ¬(pc(s, i) = cs ∧ ¬lock(s)) that is
equivalent to pc(s, i) = cs⇒ lock(s) that is lem1(s, i).

4 It is possible and/or necessary to conjecture and use a lemma to discharge a case
even though what to show in the case does not reduce to false.

36

Fig. 2. A snip of a proof tree that mx(s) is an invariant of MTAS

Fig. 3. Some possible situations when proving that p is an invariant of M

The systematic way to conjecture lemmas may not work for larger examples
than TAS because case analysis may have to be repeated too many times until
what to show reduces either true or false. Even if we reach the case in which
what to show reduces false, a lemma conjectured could be so long that we may
find it trouble to prove that the lemma is an invariant of M .

Our experiences on ITP tell us that better understandings of M and/or how
M behaves let us conjecture useful lemmas to complete the proof concerned.
Moreover, the properties we are interested in are invariants in this paper. There-
fore, it suffices to get better understandings of RM . In general, RM contains an
infinite number of states, and the task of extracting knowledge from such a huge
database is the role of ML. However, classical machine-learning techniques only
work for a database whose elements are expressed in propositional form, while
our database consists of system states expressed in first-order form. There is the
ML technique that can deal with first-order forms: Inductive Logic Programming
(ILP). This is why we use ILP.

3 Verification of Communication Protocol

Communication Protocol is a class of algorithms designed to manage the data
transmitted between senders and receivers through unreliable channels such that

37

Fig. 4. SCP and part of a state machine MSCP formalizing SCP

packets may be duplicated and dropped. There are many such algorithms pro-
posed so far. In this paper, we take into account two simplified versions of TCP:
SCP and ABP, where SCP is a simplified version of ABP. Fig. 4 shows a snapshot
(a state) of a state machine MSCP formalizing SCP and depicts two classes of
transitions out of six in MSCP. Let Bool, Nat, List, BNPair, PCell, and BCell be
the sets (or the types) of Boolean values, natural numbers, lists of natural num-
bers, Bool-Nat pairs, cells of BNPair, and cells of Bool, respectively. Let t and
f denote true and false, respectively. Each state of MSCP is characterized by six
values: sb ∈ Bool, d ∈ Nat, rb ∈ Bool, buf ∈ List, dc ∈ PCell, and ac ∈ BCell.
Those initial values are t, 0, t, nil, empty, and empty, respectively. ac is used
to deliver 〈sb, d〉 to Receiver from Sender, and bc is used to deliver rb (used as
an ack of the data received and stored as the top of buf by Receiver) to Sender
from Receiver. MSCP has six classes of transitions: snd1, rec1, snd2, rec2, drp1,
and drp2. snd1 puts 〈sb, d〉 into dc. If ac has b ∈ Bool, then rec1 gets b from ac,
and complements (or negates) sb and increments d if b 6= sb. snd2 puts rb into
ac. If dc has 〈b, n〉 ∈ BNPair, then rec2 gets 〈b, n〉 from dc, and complements rb
and stores n in buf at top if b = rb. If dc has 〈b, n〉 ∈ BNPair, then drp1 just
drops 〈b, n〉 from dc. If ac has b ∈ Bool, then drp2 just drops b from ac.

Let PQueue and BQueue be the sets of queues of BNPair and queues of Bool,
respectively. The difference between ABP and SCP is as follows. dc ∈ PQueue
and ac ∈ BQueue are used in ABP. snd1, rec1, snd2, rec2, drp1 and drp1 in
ABP are quite similar to those in SCP, although the top element of each queue
is taken into account in ABP. ABP has two more classes of transitions dup1 and
dup2. If dc and ac are not empty, then dup1 and dup2 duplicates the top element
of dc and ac, respectively, in ABP. Let MABP be a state machine formalizing
ABP.

One property SCP and ABP should enjoy is what is called the reliable com-
munication property. The property can be described as follows: all data up to
the current one d or the previous one d − 1 have been successfully delivered to
Receiver without any duplicates nor any drops. To verify that SCP and ABP
enjoy the property, all we have to do is to prove that the following state pred-
icate is an invariant of MSCP and MABP, respectively: ((sb = rb) ⇒ (buf =

38

Fig. 5. Four state patterns of MSCP

d− 1, . . . , 0))∧ ((sb 6= rb)⇒ (buf = d, d− 1, . . . , 0)). Let rcp be the state predi-
cate. We may explicitly write rcp(s), where s is a state. Conducting the formal
verification that rcp is an invariant of MSCP and gradually getting better un-
derstandings of SCP, we have realized that the reachable states of MSCP can be
classified into the four state patterns shown in Fig. 5, and lemmas can be conjec-
tured from the four state patterns. To prove that rcp(s) is an invariant of MSCP,
we first apply SSI to s, generating seven sub-cases (or sub-goals). One sub-case
is the induction case in which rec2 is taken into account. Let us consider the
induction case. The case is first split into two sub-cases based on the condition
of rec2: (1) dc is empty and (2) dc is not empty. Case (1) is discharged. For case
(2), let dc contain 〈b, n〉. Case (2) is further split into two sub-cases based on
whether rb equals b: (2-1) rb 6= b and (2-2) rb = b. Case (2-1) is discharged. Case
(2-2) is further split into two sub-cases based on whether sb equals b: (2-2-1)
sb 6= b and (2-2-2) sb = b. Case (2-2-1) is not discharged without use of any
lemmas. The four state patterns shown in Fig. 5 let us realize that state pattern
1 is one and only one such that rb equals b, from which we can conjecture the
lemma: dc = c(〈b, n〉) ∧ rb = b ⇒ 〈sb, d〉 = 〈b, n〉, where c is the constructor
of PCell for non-empty cells. The lemma is used to discharge case (2-2-1). Case
(2-2-2) is further split into two sub-cases based on whether d equals n: (2-2-2-1)
d 6= n and (2-2-2-2) d = n. Case (2-2-2-1) is discharged with another lemma.
Case (2-2-2-2) is discharged with a simple lemma of Boolean values. Then, the
induction case is discharged.

Conducting the formal verification that rcp is an invariant of MABP and grad-
ually getting better understandings of ABP, we have realized that the reachable
states of MABP can be classified into the six state patterns shown in Fig. 6, and
lemmas can be conjectured from the six state patterns.

4 Framework

ILP is a machine learning technique for constructing concept definitions (logic
programs) from examples and a logical domain theory (background knowledge)[5].
In general setting, an ILP learning task is defined as follows. Given a background
knowledge B and examples E consisting of positive examples E+ and negative
examples E−, such that B 6|= E+ and B ∧ E− 6|= �, the aim is then to find

39

Fig. 6. Six state patterns of MABP

a hypothesis H such that B ∧ H |= E+ (completeness) and B ∧ H ∧ E− 6|= �
(consistency). To fully describe a learning task in ILP, we need to clearly define
B, H, E together with E+ and E−. Since our learning task is to characterize
RM , E is a set of system states consisting of reachable states (E+) and unreach-
able states (E−). Then, H is a logic program that is an approximate definition
of RM such that it is expected to be able to judge if a given state is reachable
for M . Note that it is in general impossible to construct a computable predicate
that can always judge if a given state is reachable for M from the undecidabil-
ity of the reachability problem. Finally, B is a set of clauses that define data
structures, types, predicates, etc. used in E and to construct H.

We have designed a framework for our purpose. The architecture of the frame-
work is shown in Fig. 7. An input to the framework is an equational system
specification of a state machine of which we would like to extract the character-
istics of the reachable states. An equational specification is written in CafeOBJ
and suited for ITP. An equational specification is first translated into a rewrite
theory specification written in Maude (a sibling language of CafeOBJ) with
an automatic translator YAST [6]. A rewrite theory specification is suited for
model checking. The Maude search command, a bounded model checker for in-
variants, is then used to generate reachable states that are positive examples in
our learning task. Possible unreachable states that are negative examples in our
learning task are generated as follows. Given a state predicate that is likely to
be an invariant of a state machine concerned, we randomly generate states and
then produce each of the states that does not satisfy the state predicate as an
unreachable state. Those states generated as E are expressed in Maude, which
should be converted into unit Horn clauses in Prolog.

Types and data structures used in an equational specification should be con-
verted into Horn clauses in Prolog so that they can be used as B. For example,
natural numbers specified in CafeOBJ is as follows:

40

Fig. 7. Architecture of proposed method

[Nat]
op 0 : → Nat {constr}
op s : Nat→ Nat {constr}

which is converted into the following Horn clauses:

pnat(0).
pnat(s(X)) : - pnat(X).

Moreover, user defined functions in equations should be converted into Horn
clauses. For example, let us consider the following function:

op mk : Nat→ List
eq mk(0) = 0 .
eq mk(s(X)) = s(X) |mk(X) .

where List is the type (sort) for lists of natural numbers, and nil and _|_ are the
constructors of List5. Given a natural number n, mk(n) makes the list n, n −
1, . . . , 0. The function is converted into the Horn clauses:

mk(0, [0]) : - ! .
mk(s(N), [s(N) |L1]) : - pnat(N),mk(N,L1) .

In addition to E and B, what are fed into Progol also contains mode declara-
tions. The mode declarations used in our experiments are shown in Appendix A.
The predicates used as B are also shown in Appendix A with brief explanation.
We have conducted several experiments on ABP and SCP with the two learning
modes implemented in Progol: Normal learning mode and Learning from posi-
tive examples only. The both results are not very different. In the next section,
we will show the results (learned hypotheses) of the experiments, compare them
with the state patterns, and describe how to conjecture lemmas based on the
learned hypotheses.

5 In the paper, a | b | c | nil is expressed as a, b, c.

41

5 Experiments

We have experimented with normal learning mode (with both positive and neg-
ative examples) and with positive example only mode (with positive examples
only) to learn hypotheses from various collections of system states (from 100 to
5000 for SCP case and from 500 to 10000 for ABP case). The results with both
learning modes were almost the same.

Therefore, in the rest of the section, we describe some sets of clauses extracted
from various collections of reachable states with learning from positive only mode
[7]. Moreover, the clauses are compared with the state patterns shown in Fig. 5
and Fig. 6 to explain which characteristics are extracted. We also describe how
to conjecture lemmas from the learned hypotheses.

5.1 Simple Communication Protocol

With respect to the background knowledge describing some data types, such as
Boolean values, natural numbers in Peano style and lists of natural numbers
together with some auxiliary functions described in Mode Declarations for con-
structing clauses (the descriptions of the functions are shown in Appendix A),
the experiments on SCP produced various sets of clauses from various collections
of reachable states. Based on the quality of what have been obtained from each
set of clauses, we have realized that the experiments on around 1000 states are
good enough for our learning task.

Some constraints have been used to generate reachable states used as positive
examples so as to make computational burden not too big and make learned
hypotheses reasonably good. Among the constraints used are as follows. Each
natural number n used in each reachable state was to satisfy the condition 1 ≤
n ≤ 10. This is because otherwise natural numbers are inductively defined,
forcing Progol to be loaded with too big computational burden. Each collection
has been generated from a different state that is reachable from an initial state.

We have conducted multiple experiments and obtained multiple sets of learned
axioms. Among them, we have selected one (called Set 1) that is most likely to
be closer to the four state patterns. Set 1 has been learned by Progol with Mode
declaration in Appendix A and is as follows:

state(A,B,C,D, c(p(A,B)), c(E)) : - mk(B,D) .
state(A,B,A,C, c(p(D,E)), c(A)) : - neg(A,D),mk(B, [B |C]) .
state(A,B,A,C, c(p(A,B)), c(A)) : - mk(B, [B |C]) .

where p(b, n) denotes 〈p, n〉 and c is used to construct non-empty cells.
The clauses define the predicate that takes six arguments whose types are de-
clared in Mode declaration 1. The six arguments correspond to sb, rb, d, buf ,
dc, and ac, respectively. The first clause in Set 1 says that if buf is the list that
consists of d, d− 1, . . . , 0 in this order, then the head is reachable. The head also
says that dc consists of the pair of sb and p. Therefore, the clause extracts the
characteristics shared by State Pattern 2 and State Pattern 3. The second clause

42

in Set 1 says that if sb is different from the first element b in the pair 〈b, n〉 of
dc and buf is the list that consists of d− 1, . . . , 0 in this order, then the head is
reachable. The head also says that rb and the Boolean value in ac are the same
as sb. Therefore, the clause extracts almost all characteristics of State Pattern 4.
The clause does not mention the second element n in the pair 〈b, n〉 of dc. The
third clause in Set 1 says that if buf is the list that consists of d − 1, . . . , 0 in
this order, then the head is reachable. The head also says that sb, rb, the first
element b in the pair 〈b, n〉 of dc, and the Boolean value in ac are the same. The
clause perfectly extracts the characteristics of State Pattern 1.

If the set {state(−→x) :- condi(−→x) | i = 1, . . . , n} of clauses perfectly defines
the reachable states of a state machine concerned,

∨n
i=0 condi(

−→x) must be the
strongest inductive invariant of the state machine, where −→x is a sequence of
variables. Note that we assume that term patterns are written as part of condi-
tions. For example, state(A,B,A,C, c(p(A,B)), c(A)) :- mk(B, [B|C]) is written
as state(A,B,A2, C,D,E) :- mk(B, [B|C]), A2 = A,D = c(p(A,B)), E = C(A).
Since such a perfect set of clauses cannot be learned in general due to the un-
decidability of the reachability problem, however, this is not the way we can
use to conjecture lemmas from learned hypotheses. Moreover, the formula con-
structed by

∨n
i=0 condi(

−→x) must be too long to be used effectively, even if it is
the strongest inductive invariant.

Let condi(−→x) be prei(−→x), coni(−→x), othi(−→x), where othi(−→x) may be void. We
suppose that if prek(−→x) holds, then each condi(−→x) for i ∈ {1, . . . , n}−{k} does
not hold. Then, prek(−→x)⇒ conk(−→x) is one possible candidate of lemma. If there
exist more than one such k, say k1, . . . , km, then

∧m
j=1(prekj (−→x) ⇒ conkj (−→x))

is one possible candidate of lemma. This is basically how we conjecture lemmas
from learned axioms (or hypotheses) or state patterns, such as the four state
patterns for SCP and the six state patterns for ABP.

The third axiom of the learned ones for SCP contains rb = b, dc = c(〈b, n〉),
〈sb, d〉 = 〈b, n〉 as part of the condition. If rb = b, the condition of the second
axiom does not hold. The first axiom has 〈sb, d〉 = 〈b, n〉 as part of the condition.
Therefore, according to the way to conjecture lemma, we can conjecture dc =
c(〈b, n〉) ∧ rb = b ⇒ 〈sb, d〉 = 〈b, n〉 as one lemma. This lemmas is the same as
the one conjectured from the four state patterns in Sect. 3.

5.2 Alternating Bit Protocol

ABP is a modified version of SCP such that its channels are unbounded. There-
fore, we need to define some more complex data structures: queues of pairs of
Boolean values and natural numbers - used for dc, and queues of Boolean val-
ues - used for ac. Moreover, some auxiliary functions for these data structures
are also defined as shown in Appendix B. From the experiments, it was suffi-
cient to use about 1500 reachable states for our learning task. In addition to
the same constraints used to generate reachable states in the experiments for
SCP, some more constraints were used. For example, each queue used in each
reachable state contains at least two elements. Since more recursively defined
data structures are used in ABP than in SCP, Progol spends more resources

43

(both computational and spatial resources) to search and compute candidates
of learned hypotheses and often reaches the limitation of resources. Hence, the
learned hypotheses in the experiments for ABP were not as good as those for
SCP. Each set of learned hypotheses does not extract many characteristics of
the reachable states of ABP. For example, let us consider the following set of
clauses learned with Mode Declaration 2 in Appendix A.

state(A,B,C,D, [p(A,B) |E], [A |F]) : - neg(A,C) .
state(A,B,C,D, [p(C,E) |F], [A |G]) : - neg(C,H), succ(E,B),

mk(B, [B |D]),memberb(H,G) .
state(A,B,C,D, [p(C,E) |F], [A |G]) : - mk(E,D),memberp(p(A,B), F) .
state(A,B,C,D, [p(A,B) |E], [F |G]) : - mk(B,D) .
state(A,B,A,C, [p(D,E) |F], [A |F]) : - mk(E,C) .
state(A,B,C,D, [p(A,B) |E], [A |F]) : - mk(B, [B |D]) .
state(A,B,C,D, [p(E,F) |G], [A |H]) : - neg(A,E), succ(F,B),mk(B, [B |D]) .

We asked Progol to learn the definition of predicate state for ABP as we did
for SCP. The first clause partially extracts the characteristics of State Pattern 1
shown in Fig. 6. The second clause partially extracts the characteristics of State
Pattern 6. The third clause partially extracts the characteristics of State Pattern
2 and State Pattern 3. The fourth clause partially extracts the characteristics of
State Pattern 2 and State Pattern 3 as well. The fifth clause partially extracts
the characteristics of State Pattern 1. The sixth clause partially extracts the
characteristics of State Pattern 6. But, some very important characteristics on
dc and ac cannot be extracted by any clauses learned.

We suspected that we did not use enough background knowledge so that some
very important characteristics on dc and ac could be extracted in the experiment
in which the last set of clauses were learned. The important characteristics on
dc is that dc contains at most one gap such that two adjacent pairs 〈b, i〉 and
next(〈b, i〉) appear at most once in dc, where next(〈b, i〉) = 〈¬b, i + 1〉. We have
added two predicates gap0 and gap1 whose definitions are found in Appendix
A. Then, the following set of clauses have been learned by Progol:

state(A,B,C,D, [p(A,B) |E], [A |F]) : - neg(A,C), gap0(p(A,B), E) .
state(A,B,C,D, [p(A,B) |E], [C |F]) : - mk(B,D), gap0(p(A,B), E) .
state(A,B,A,C, [p(D,E) |F], [A |G]) : - neg(A,D), succ(E,B),mk(B, [B |C]) .

gap1(p(A,B), F) .
state(A,B,A,C, [p(A,B) |D], [A |E]) : - mk(B, [B |C]), gap0(p(A,B), D) .

The third clause more precisely extracts the characteristics of State Pattern 6
showing in Fig. 6, including the important characteristics of dc. Since the third
clause is the only one in which gap1(p(A,B), F) holds, we can conjecture a
lemma from this clause. gap1(p(A,B), F) can be rephrased as follows: dc =
ps1@(p1, p2, ps2) ∧ p1 6= p2 ∧ (p3 ∈ ps1 ⇒ p3 = p1) ∧ (p4 ∈ ps4 ⇒ p4 = p2),

44

where @ is the concatenation function of queues. Therefore, we can conjecture
the following:

(dc = ps1@(p1, p2, ps2) ∧ p1 6= p2 ∧ (p3 ∈ ps1⇒ p3 = p1)∧
(p4 ∈ ps4⇒ p4 = p2))⇒ (p2 = 〈sb, d〉 ∧ buf = d− 1, . . . , 0)

This lemma is very useful to prove that ABP enjoys the reliable communication
protocol.

Honestly speaking, it is not easy to systematically come up with gap0 and
gap1 from the formal specification of ABP. This has something to do with what is
called Predicate Invention [8]. It is one piece of our future work to systematically
discover some predicate, such as gap0 and gap1 that do not explicitly appear
in formal specifications. We anticipate that Meta-interpretive learning and its
implementation Metagol [9] will help us do so.

6 Related Work

ML has been used to find lemmas in ACL2 [10]. Their tool can calculate the
similarity between the current proof and other proofs in a given proof library
containing many existing proofs that have already been proved. Their tool finds
an existing proof whose structure is most likely to be similar to that of the
current proof, and proposes lemmas for the current proof that are constructed
from the lemmas used for the existing proof.

ILP has been successfully integrated with model checking [11]. Although
a model checker systematically finds a counterexample demonstrating that a
system specification (or a model) does not enjoy a property, human users are
supposed to revise the system specification so that the revised version can enjoy
the property. They propose a way to systematically conduct such a revision for
the system specification with an ILP system that uses a counterexample found
by a model checker as a negative example, a witness constructed according to
the property concerned as a positive example, and a system specification as the
background knowledge.

Our way to use an ILP system is different from the two above mentioned
studies. We use an ILP system to extract the characteristics of the reachable
states of a state machine as learned clauses (hypotheses) from which lemmas
could be conjectured.

7 Conclusion and Future Work

We have reported on case studies in which Progol has been mainly used to
extract the characteristics of the reachable states of MSCP and MABP. We have
compared them with the state patterns we had manually learned from our ITP
experiences for SCP and ABP. We have not formally proved that the four and six
state patterns exactly cover all reachable states of MSCP and MABP, respectively.
But, our experiences on conjecturing lemmas based on the state patterns say that

45

they are most likely to do so and very useful for lemma conjecture. It would be
possible to generate different state patterns by combining and dividing those
state patterns. From a lemma conjecture point of view, however, the four and
six state patterns for SCP and APB are very useful. The learned hypotheses
(a set of clauses) for SCP is very close to the four state patterns if not exactly
the same. If gap0 and gap1 are used, the learned hypotheses for ABP is also
close to the six state patterns. Otherwise, the learned hypotheses for ABP do
not capture the important characteristics on dc appearing in State Pattern 6.

We have also described how to conjecture lemmas based on the learned hy-
potheses. This demonstrate that our approach is likely to be promising for lemma
conjecture.

But, there are lots more things left to do. In our experiments, gap0 and gap1
have been provided by human beings. It is not trivial to come up with such
predicates because they do not explicitly appear in an equational specification
written in CafeOBJ. It is called predicate invention to come up with new predi-
cates from a program or specification in which those predicates are not explicitly
used. Metagol has implemented a mechanism with which predicate invention is
doable. One piece of our future work is to come up with a method in which
Metagol is mainly used to invent new predicates, such as gap1 and gap1. We
need to conduct more case studies in which our approach is applied to other
protocols and algorithms, such as Paxos and the Chandy-Lamport snapshot al-
gorithm. Another piece of our future work is to come up with how to select the
best one among several sets of learned axioms without knowing any oracles in
advance and/or how to integrate multiple sets of learned axioms so as to obtain
a better one.

Acknowledgement The authors wish to thank anonymous referees who com-
mented on a draft of this paper. They also wish to thank some participants of
ILP 2015, especially Stephen Muggleton and Gerson Zaverucha, who gave us
useful comments on our presentation at ILP 2015 that helped us revise the draft
of this paper.

References

1. Ogata, K., Futatsugi, K.: Proof score approach to analysis of electronic commerce
protocols. IJSEKE 20(2) (2010) 253–287

2. Barrett, C.: Decision procedures: An algorithmic point of view. J. Autom. Rea-
soning 51(4) (2013) 453–456

3. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: 6th
FMOODS. (2003) 170–184

4. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ
method. In: Algebra, Meaning, and Computation. (2006) 596–615

5. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods.
J. Log. Program. 19/20 (1994) 629–679

6. Zhang, M., Ogata, K., Nakamura, M.: Translation of state machines from equa-
tional theories into rewrite theories with tool support. IEICE Trans. Inf. & Syst.
94-D(5) (2011) 976–988

46

7. Muggleton, S.: Learning from positive data. In: 6th ILP. (1996) 358–376
8. Stahl, I.: Predicate invention in ILP - an overview. In: ECML-93. (1993) 313–322
9. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning

of higher-order dyadic datalog: predicate invention revisited. Machine Learning
100(1) (2015) 49–73

10. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recog-
nition and lemma discovery in ACL2. In: 19th ILP. (2013) 389–406

11. Alrajeh, D., Russo, A., Uchitel, S., Kramer, J.: Integrating model checking and
inductive logic programming. In: 21st ILP. (2011) 45–60

Appendix A: Mode Declarations and Predicate
Descriptions

toppqu(A,B) Pair B is on top of queue A of pairs
topbqu(A,B) Boolean value B is on top of queue A of Boolean values
mk(A,B) B is the ordered list of natural numbers from number A to 0
neg(A,B) Boolean value A is the negation of Boolean value B
fst(A,B) A is the first element of pair B
snd(A,B) A is the second element of pair B
succ(A,B) Natural number B is the successor of natural number A
memp(A,B) Pair A is in queue B of pairs
memb(A,B) Boolean value A is in queue B of Boolean values

Mode declaration 1
: - modeh(1, state(+bool,+pnat,+bool,+nlist, c(p(+bool,+pnat)), c(+bool)))?
Mode declaration 2
: - modeh(1, state(+bool,+pnat,+bool,+nlist,

[p(+bool,+pnat) | + pqueue], [+bool | + bqueue]))?

next(p(B1, N),p(B2, s(N))) : - neg(B1, B2) .
gap0(P, []) : - bnpair(P) .
gap0(P, [P |T]) : - gap0(P, T).
gap1(P, []) : - bnpair(P) .
gap1(P1, [P2 |T]) : - (P1 \== P2,next(P2, P1), gap1(P1, T)); gap0(P1, T) .

47

