
A Python Library for FCA with Conjunctive
Queries

Jens Kötters

Abstract. The paper presents a Python library for building concept lat-
tices over power context families, using intension graphs (which formal-
ize conjunctive queries) as concept intents. The IntensionGraph class
implements intension graphs and algebraic operations on them. An inter-
active Jupyter notebook session is illustrated and used to present core
API features. Intension graphs, power context families and morphism
tables have visualizations as SVG or HTML provided by the library and
supported by the notebook.

Keywords: Conjunctive Queries, Power Context Families, Python Li-
brary, Concept Lattices

1 Introduction

A Python library is presented which uses conjunctive queries as intents to build
concept lattices over relational data. The data is assumed to be representable
by a power context family [5]. Conjunctive queries are formalized by intension
graphs, which are introduced in [4] as attribute-labeled graphs with an optional
window (which designates distinguished nodes). Concept lattices are obtained as
described in [3], where conjunctive queries have been formalized using relational
structures. In fact, the family tree example of [3] (Figs. 1 and 2) will be reused
as an example in Sects. 4 and 5. Although IntensionGraph is the main class
of the presented library, the particular formalization of conjunctive queries is
not central to this paper as it focuses more on the visual representation, which
is independent of the underlying formalism.

Conjunctive queries correspond to primitive positive (pp) formulas. These
formulas are built from atoms using only conjunction (∧) and existence quan-
tification (∃). Section 2 documents this correspondence. Section 3 focuses on the
morphism (pre-)order on intension graphs. Algebraic operations are presented
in these sections. Section 4 covers power context families, and Sect. 5 focuses on
the concept lattice.

2 Primitive Positive Formulas

In what follows, we will present the API functions in the context of an inter-
active console session (Figs. 1, 2, 3, 4 and5) in the Jupyter notebook (formerly
IPython). The labels In[n] and Out[n] in these figures denote the input and
output of the n-th interaction, and these shall be referred to as cell n. Cell 1

55



imports the library, thus making API functions accessible in the notebook. The
intension graph shown in cell 2 represents the atom m(x). The intension graph in
cell 3 represents the atom R(x1, x2). Intension graphs implement a repr svg
method which returns an SVG representation of a graph. The Jupyter notebook
supports this method by rendering the SVG when a graph expression is input.
Rendering does not take place when the expression is part of a statement, so to
produce a graphic in cell 3, we repeat the expression after the assignment. The
sum of intension graphs represents the conjunction of formulas (cell 4). Using
these operations, we can produce any conjunction of atoms. To apply existen-
tial quantification, we call the windowed function with an arbitrary number
of key-value-arguments, where every node whose ID is not listed as a value is
considered existentially quantified, and the keys are alias names for the free vari-
ables (aliases are never confused with IDs, so there is no name collision when an
alias equals some nodeID). In the SVG output, the yellow nodes are free and the
white nodes are existentially quantified. When adding two graphs, the library
may change node IDs to ensure unique node IDs in the sum; this is achieved
by prefixing node IDs with operand indeces (cf. cell 6). Node IDs do not have
to resemble variable names; arbitrary nonempty strings can be chosen. The cur-
rent implementation does not show alias names in the SVG, but these can be
obtained from the window attribute (cell 7). When adding two graphs, nodes
are merged if they have the same alias, the node IDs do not influence the result.
The graphs generated by node and star have aliases equal to node IDs (cell
8), which is why in the previous examples it seems that nodes were merged by
ID.

3 Order Properties

Given intension graphs G and H, we consider G to be entailed by H if we can
map G to H (preserving all edges, labels and aliases). Entailment gives rise to a
preorder on intension graphs (a preorder is like an order but allows elements to be
equivalent). To start with, let us consider the entailment preorder for graphs with
empty window (i.e. logical sentences). The IntensionGraph class provides a
binary product operation which realizes an infimum in the entailment preorder
(cf. [1, pg. 208], also [3, Cor.1]). For an example, consider the graph G from cell
8. The product pairs up nodes in all combinations (one from each operand) and
describes their commonalities in a single (not necessarily connected) graph. It
can be verified that the graphs G and G ∗G (cell 9) entail each other, which is
expected because the product realizes an infimum. The (components) method
(cf. cell 10) decomposes a graph into a list of its connected components, and the
component c2, which happens to be the middle component in the SVG of G∗G,
can be mapped to G in two possible ways. The (morphisms) method computes all
morphisms (i.e. all preserving maps, see above) from one graph to another, and
collects these in a Table object, which renders as HTML (via a repr html
method, see cell 10). For a fixed system of labels (which corresponds to a logical
signature), the terminal method returns a maximal intension graph (cell 11).

56



Fig. 1. Console session (part 1)

57



Let us also consider intension graphs with a single designated node (designated

Fig. 2. Console session (part 2)

by the alias ”0”). The designated node in the product is obtained by pairing
up nodes with the same alias. In cell 12, we have multiplied two copies of G
with aliases set to different nodes (the call windowed(nid) is a shorthand for
windowed("0"=nid)), and in this setting we identify the product with the
single component which holds the designated node. So the product of connected
graphs is connected in this case. The table of morphisms (cell 13) contains only
one morphism on the first factor (unlike in cell 10) because morphisms must

58



Fig. 3. Console session (part 3)

preserve aliases. The maximal graph with a single designated node is shown in
cell 14.

4 Power Context Families

The library can read in power context families in a custom file format which
is derived from Burmeister’s cxt representation format for formal contexts. The
pcf format differs in that the file must start with a line ”B-PCF” instead of ”B”,
and may contain additional contexts after the first one. The contexts are stated
in the order of the power context family (up to a largest index), and empty
contexts must be stated by two ”0”-lines. The commands in cell 15 read in a
power context family, which displays as HTML. Power context families can be
represented as intension graphs, using the ig function (cell 16).

5 Concept Lattices

Concept lattices of intension graphs can be described by pattern structures[2].
The constructor of the PatternStructure class takes as parameters the pat-
tern class and a power context family (cell 19). Lattice building is currently only
supported for intension graphs with a single designated node, as described in
Sect. 3. A simple build command builds the concept lattice (cell 19), but the
library does not deal with inherent complexity problems (morphism checks), so
the build algorithm will likely fail for anything but small examples. The pat-
tern class must expose a certain interface required by the build algorithm, and

59



Fig. 4. Console session (part 4)

IntensionGraph is currently the only implementation of the interface. The
build algorithm is a variant of Ganter’s NextConcept algorithm. The algorithm
multiplies two patterns in each construction step, starting from the object in-
tents. The object intents are obtained from D (see cell 16) by choosing the
respective object as a designated element. Cell 17 computes the intent for the
concept generated by objects B and C. The minimize function maps each in-
tension graph to another, node-minimal intension graph (cell 18), which can be
used for display and further computations. The concept lattice is simply repre-
sented as a concept list, where list order respects concept order. In particular, the
top concept is the last element in the list (cell 20). Each concepts has attributes
upper and lower, which hold lists containing the upper and lower neighbors,
respectively.

6 Conclusion

The core API functions of a library for intension graphs and concept lattices
thereof have been presented. Intension graphs formalize conjunctive queries and
have solutions w.r.t. a given power context family. The library and two sample
pcf files are available at https://github.com/koetters/cgnav. Although
the library is independent of the Jupyter environment, the visualizations pro-
vided by the environment may be instructive and facilitate further development.
Efficiency of computations must be improved to allow for somewhat larger power

60



Fig. 5. Console session (part 5)

61



context families. Transformation of data from other sources (like RDF or rela-
tional databases) into power context families could be a useful feature and may
involve conceptual scaling (e.g. for numeric values).

References

1. Chein, M., Mugnier, M.L.: Graph-based Knowledge Representation: Computational
Foundations of Conceptual Graphs. Advanced Information and Knowledge Process-
ing, Springer, London (2009)

2. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach,
H.S., Stumme, G. (eds.) Proceedings of ICCS 2001. LNCS, vol. 2120, pp. 129–142.
Springer (2001)

3. Kötters, J.: Concept lattices of a relational structure. In: Pfeiffer, H.D., Ignatov,
D.I., Poelmans, J., Gadiraju, N. (eds.) Proceedings of ICCS 2013. LNCS, vol. 7735,
pp. 301–310. Springer (2013)

4. Kötters, J.: Intension graphs as patterns over power context families. In: Proceedings
of CLA 2016 (2016), to appear

5. Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Delu-
gach, H.S., Keeler, M., Searle, L., Sowa, J.F. (eds.) Proceedings of ICCS 1997, 5th
International Conference on Conceptual Structures. LNCS, vol. 1257, pp. 290–303.
Springer, Heidelberg (1997)

62


	A Python Library for FCA with Conjunctive Queries



