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Abstract. We have considered influence of technological errors of formation of 

the amplitude optical lattices made by method of a laser ablyation of thin films 

of molybdenum on distribution of diffraction orders in a distant zone of diffrac-

tion. For this purpose we have digitized a profile of a site of the created diffrac-

tion structure with the subsequent transformation to amplitude or phase func-

tions of a transmission.  
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Introduction 

Currently the ablation of metal films is widely used by laser radiation in such areas as 

semiconductor production, photo-electric devices, diffraction lattices and other high-

technology appendices [1-9]. In this field researches is actual the task of forming of 

the amplitude diffraction optical elements (DOE), and also the masking layers applied 

to transfer of a microrelief in a substrate is actual. In this respect is perspective thin 

films of molybdenum [6] as molybdenum has the following features are perspective: 

– low temperatures of oxidation of metal, and oxide sublimation; 

– high ratio of heat diffusivities metal/oxide. 

In works [10-12] the possibility of forming of optical microstructures by a laser abla-

tion of thin films of molybdenum is shown. The effect of triple reducing the size of a 

zone of an ablation has been found (in comparison with diameter of a focal spot). 

However edges of tracks turned out uneven, around tracks heat-affected zone (HAZ) 

caused by metal oxidation was created.  
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The purpose of this work consists in identification of influence of technological errors 

of production of lattices on efficiency of their work. 

Modeling of a spatial range of focusing in a distant zone has been for this purpose 

carried out. 

Methods and materials  

Microstructures were formed at station of the laser record CLWS-200 [13-14] in the 

following sequence of technological operations: 

– a dusting of a thin film of molybdenum on a substrate; 

– formation of a test lattice by a local ablyation of a film under the influence of laser 

radiation. 

Optically smooth substrates from glass and fused quartz the size 50×50 of mm, 3 mm 

thick formed the basis. Film of molybdenum with a thickness of 17 nm were deposit-

ed by magnetron sputtering method on the instruments «Caroline D-12A» (Russia, 

Zelenograd) under the following conditions: a magnetron power -  700W, substrate 

temperature - 200º C, the argon pressure – 0,2Pa. Deposition time was 2 min. 

Laser recording was carried out under the following conditions: the working length of 

the laser wavelength - 488 nm; the maximum power delivered to the recording head - 

100 mW; record structure - concentric rings with step 3 µm and an outer radius of 3 

mm; the amount of power to each ring is decreased from 100% at the point of largest 

radius to the center 0 in increments of 0.5%. Sample rotation speed - 10 s-1. These 

process parameters correspond to the maximum laser density of power Еmax = 20 

MW/cm2. The impact of laser radiation led to local ablation of the molybdenum film. 

Analysis of the results  

The fragment of the analyzed lattice is given in fig. 1 [10]. The width of the tracks is 

in the range of 250-400 nm. 

The structure shown in fig. 1 through binarization can be converted to a binary dif-

fraction grating (Fig. 2b). 

The resulting structure is an amplitude grating with different sized areas. In this case 

the resulting amplitude is a lattice, but can easily be converted into a phase diffraction 

grating. Consider the work of the resulting structure in both cases. 

For clarity, in fig. 3 shows the profilogram a plot of the derived structure (fig. 3a), 

taken in a direction perpendicular to the recording tracks, by using a profilometer 

KLA-Tencor P16+. The profile is the same binary grating shown in Fig. 3b. 

To calculate the intensity distribution in the far zone of diffraction of a plane light 

wave in the considered two-dimensional structure used fast algorithms of direct calcu-

lation of the Fourier transform [15-17]. 

Calculation based on numerical integration, in contrast to the algorithms of the fast 

Fourier transform, allows to correctly evaluate the physical characteristics of the gen-

erated fields. This is especially important in the analysis of the dispersive properties 

of diffraction gratings [18, 19].  
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Fig. 1. Image of the lattice analysed 

a)   b)  

Fig. 2. Transformed an ideal (a) and (b) lattice (negative image)   

а)  
 

b)  

Fig. 3. The profiles plot (a) real and (b) given to the binary appearance of the diffraction struc-

ture   
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In fig. 4a shows the intensity distribution in order, in fig. 4b is the same distribution 

together with the intensity distribution of an ideal amplitude grating (fig. 2a) with the 

same period and width of the tracks. 

The standard deviation of the two graphs in fig. 4b is 0.26, given the nature of the 

distribution, is not a big mistake. 

Was also simulated diffraction by a phase grating of this type. This digitized distribu-

tion shown in fig. 1, was transformed into the phase transmission function, the profile 

of which is shown in fig. 5. 

In fig. 6a shows the distribution of intensity in the far zone of diffraction obtained 

after using the Fourier transform. In Fig. 6b shows the same distribution compared to 

the distribution of ideal phase grating with the same period and width of the tracks. 

Mean-square deviation of the two graphs in fig. 6b is 0.21, which, given the nature of 

the distribution, is also not a big mistake, because in this case more important than an 

exact match of the positions of the maximum.  

 

a)     
 

 b)  
 

Fig. 4. The intensity distribution orders in the far zone of diffraction from the amplitude struc-

ture, shown in fig. 3 (a), the same distribution of intensity on the order in the far zone of dif-

fraction from the amplitude structure, shown in fig. 2b) compared to the distribution from a 

perfect lattice (dashed line) (b) 

 
Fig. 5. Section transmissive phase functions obtained from the profilograms in fig. 2a 
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a)     
 

 b)  

Fig. 6. The intensity distribution orders in the far field diffraction phase structure shown in fig. 

5a), the same intensity distribution over orders in the far zone of diffraction from the amplitude 

structure, shown in fig. 5b) compared to the distribution from a perfect lattice (dashed line) (b) 

Conclusion  

The work experimentally shows the possibility of creating optical structures of sub-

micron resolution. Also by simulation it is shown the performance of the generated 

structures both in amplitude and in phase. The magnitude of the standard deviations 

for the distributions of intensity of 0.26 and 0.21, respectively, for amplitude and 

phase gratings are not critical, assuming the structure of the resulting distributions 

(there is almost perfect coincidence of the position of diffraction orders). Therefore, 

demonstrated working technology for forming diffractive structures with a minimum 

element size of 0.25 µm. 
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