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Abstract. In this paper we consider the possibility of replacing the diffraction 

axicon and the conical axicon on the gradient lens with a linear variation of the 

refractive index. Analytically and numerically using the finite-difference time-

domain method we performed a comparative study of the Gaussian beam dif-

fraction on diffraction mikro-axicon, conical axicon and gradient microlens 

consisting of subwavelength layers. The parameters under consideration the 

types of elements estimated in the depth of focus and a transverse dimension of 

beam. 
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Introduction  

Environments with light propagates in curved paths are the subject of gradient optics 

(GRIN - GRadient INdex) [1]. The flat surfaces of gradient lenses make them very 

useful for collimating light from the end of single mode fiber and focusing of the 

collimated beam to another single mode fiber [2]. Thus, light beams passing through 

the gradient lens can be the use for better focusing [3-5]. 

When transmitting information over optical fibers easier connection between the fi-

bers do using gradient elements [6, 7], usually, such components are in some way 

analogue of a lens [8, 9], which forms a short focus. Typically used two gradient ele-

ments with a sufficiently precise mutual agreement: one at the output, which scatters 

the laser beams and one at the entrance, which collects the laser beam [10, 11]. 

One advantage of using the axicon is the formation of an extended focus [12, 13], 

including subwavelength lateral size [14, 15]. The advantage of using a diffrac-tion 

axicon before the conical axicon is in the relative simplicity of manufacturing, and in 

the possibility of achieving, for this element of high numerical aperture values, inac-
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cessible to the conical axicon due to total internal reflection [16-18]. An extended 

focus [19] can be used to alleviate the requirements for alignment of the optical fiber 

connection.  

For connections required flat edge [20], and diffraction axicon has it. In this pa-per, 

we consider particularly focusing Gaussian beams by using gradient optical ele-ments 

[21, 22] and similar a conical and diffraction axicons. For the numerical simu-lation 

of diffraction considered laser beams used finite-difference time-domain method 

(FDTD) using high-performance computing [23]. 

Diffraction of the Gaussian beam 

Under the linear change of the refractive index  the phase difference 

is analogous to a conical axicon: 

,   (1) 

where – the refractive index in the center,  ,  is the wavelength, L – lens 

thickness, α – parameter governing the rate of change of the refractive index.  Let’s 

define parameters of a conical axicon creating the same phase difference [14]: 

,   (2) 

In according to equations (1) and (2), we selected axicon angle: 

,   (3) 

where nax – the refractive index of axicon material, β – a half of angle at the axicon 

tip (Fig1(c)). H – axicon height: 

,   (4) 

Let us consider the diffraction axicon (Fig.1 (b)). The phase difference between the 

central ray and a ray extending from the center at a distance is equal: 

диф
k NA r     ,   (5) 

where NA – the numerical aperture of the axicon, r - radius of the axicon. Then, the 

numerical aperture of axicon is 

0
NA n L  ,   (6) 

where n0 = 3,47 – the value of the central layer for the considered layered lens. Period 

of axicon d is changed to the following law: 
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d ,
NA


    (7) 

Height axicon considered on the basis of the phase shift on π: 

ax ax

h 0, 21 ,
k(n 1) 2(n 1)

 
   

 
   (8) 

when the refractive index nax = 3,47. 

a)  b)   

c)     

Fig. 1. The transverse structure (scheme) of the matched linearly layered lens (a), diffractive 

axicon (b) and the conical axicon (c) 

Simulation parameters: the wavelength  = 1.55 microns, the size of the computation-

al domain x, y,z  [–4,5; 4,5]. The thickness of the absorbing layer PML ~ 0.65 

(1 micron), the sampling step of space – /31, the sampling step of time – /(62c), 

where c is the velocity of light. As the input laser radiation with the circular polariza-

tion we use the fundamental Gaussian mode. In the case of layered lens we use the 

linearly changes of refractive index of lens: from n=3.47 in center to n=1.34 at the 

lens edge. Let’s denote a lens width on propagation axis of the laser beam as L. 

Numerical simulation was made using the computational cluster with the power of 

775 GFlops. The cluster’s characteristics are the following: 116 cores, computing 

nodes – 7 dual servers HP ProLiant 2xBL220c, RAM volume 112 Gbit. 
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We consider the half width at half intensity (FWHM) and depth of field (DOF). Fix a 

lens width L = 1,55 with refractive index n = 3,47.The numerical results studies for 

the axicon and the layered lenses with a corresponding α are given in Table 1. 

Table 1. Diffraction of Gaussian beam on a layered lens, diffraction and conical axicon 

Type 

of 

elem

ent 

α = 0,13 α = 0,12 α = 0,11 α = 0,1 

L
a
y
er

ed
 l

en
s 

 

DOF = 3,2λ 

FWHM = 0,67λ 

 

DOF = 2,85λ 

FWHM = 0,68λ 

 

DOF = 3,2λ 

FWHM = 0,67λ 

 

DOF = 3,4λ 

FWHM = 0,68λ 

D
if

fr
a
ct

io
n

 a
x
ic

o
n

 

 

DOF = 2,55λ 

FWHM = 0,71λ 

 

DOF = 3,23λ 

FWHM = 0,75λ 

 

DOF = 3,77λ 

FWHM = 0,77λ 

 

DOF = 4,36λ 

FWHM = 0,84λ 

С
o

n
ic

a
l 

a
x
ic

o
n

 

 

DOF = 1.36λ 

FWHM = 0.78λ 

 

DOF = 1.77λ 

FWHM = 0.76λ 

 

DOF = 2.17λ 

FWHM = 0.75λ 

 

DOF = 2.81λ 

FWHM = 0.76λ 

Reducing the parameter α for a layered lens increases the length of the light segment 

with a substantially constant radius of the light spot. A separate case with α = 0.12, 

where the observed change in the overall diffraction patterns and reducing the depth 

of focus.  

For diffraction axicon situation is as follows: reduction in α (that means reducing the 

numerical aperture) also leads to an increase in the length of the light segment. No 

cases like the case α = 0.12 for a layered lens. And also we see expected focal spot 

size increases. 

For the conical axicon also decrease α (which is equivalent to an increase of the angle 

β) leads to elongation of the light segment. But in this case also seems certain number 
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α = 0.11, where the focal spot is minimal. Reduction of α leads to a broadening of the 

beam. 

 

Fig. 2. Diffraction of Gaussian beam on a layered lens with changing L (α = 0.11), the intensi-

ty: L = 1.55λ (black line), L = 1.75λ (gray line) 

Table 2. Results of numerical simulation when changing the height of the layered lens 

α L = λ L = 1.55λ L = 1.75λ L = 2λ 

0.11 

 
DOF = 3.7λ 

FWHM = 0.89λ 

 
DOF = 3.2λ 

FWHM = 0.67λ 

 
DOF = 2.94λ 

FWHM = 0.78λ 

 
DOF = 1.9λ  

FWHM = 0.73λ  

0.12 

 
DOF = 3.73λ 

FWHM = 0.85λ 

 
DOF = 2.85λ 

FWHM = 0.68λ 

 
DOF = 2.64λ 

FWHM = 0.87λ 

 
DOF = 0.93λ  

FWHM = 0.79λ 

When comparing rows of Table 1 it should be noted that the use of a layered lens 

provides a more narrow size of the focal spot, and when the value of α is higher than 

0.12, and more extended focal light segment. Let us consider in more detail the lay-

ered lens effect in changing its length along the axis of propagation of the laser beam 

for two cases mentioned earlier: α = 0.11 and α = 0.12 (Table 2). We consider the 

FWHM at the point of maximum intensity. 

Table 2 shows that the increase in length of the lens leads to a reduction of the focal 

length for DOF. Increasing the lens length of an increase of the numerical aperture, 

only makes sense to a certain value (Figure 2). Table 2 shows that the increase in the 
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length of more than 1.55λ lens reduces the depth of focus at a constant value of 

FWHM. 

Consider the change in the height of the diffraction axicon in case α = 0.12, i.e. at a 

numerical aperture of NA = 0.64. We varied the refractive index n. The height of the 

respective axicon considered on the basis of the phase shift at π by the formula (8). 

Numerical simulation result is shown in Table 3.  

Table 3. Diffraction of Gaussian beam on diffraction axicon with a change of the refractive 

index n 

 n = 3,47 n = 2,25 n = 1,68 n = 1,46 

In
te

n
si

ty
 

 
DOF = 3,23λ 

FWHM = 0,75λ 

 
DOF = 3,05λ 

FWHM = 0,71λ 

 
DOF = 2,21λ 

FWHM = 0,68λ 

 
DOF = 2,25λ 

FWHM = 0,68λ 

Decrease in the refractive index and simultaneously increase axicon relief leads to a 

reduction of the lengths of light segment. However, after a certain limiting value (n = 

1.68) DOF begins to increase again. It is also worth noting the reduction in the size of 

the focal spot with a decrease in the index of refraction of the axicon. However, it 

should be noted that after reaching a limiting value of the refractive index (in this 

case, when n = 1.68) of the focal spot size is stabilized and becomes comparable to 

the previously discussed case of layered lenses. 

Conclusion  

Analytically and numerically using the finite-difference time-domain method we per-

formed a comparative study of the diffraction of Gaussian beam by diffraction micro-

axicon and conical axicon, and gradient micro-lens consisting of sub-wavelength 

layers. The parameters under consideration the types of elements estimated on the 

depth of focus and a transverse dimension of beam.  

Studies have shown that layered lens with linear variation of the refractive index has 

an advantage over diffraction axicon with the same numerical aperture, as it allows to 

form a narrower focal lengths. Increasing the numerical aperture of the axicon reduces 

the focal spot formed by them, but it is accompanied by a reduction of the light seg-

ment lengths. With a value of more than α = 0.12 (numerical aperture of more than 

0.64) was obtained more extended light length segment for a layered lens. 

By reducing the thickness of the layered lens is extended light segment and increases 

its width in the plane of maximum intensity along the propagation axis. After a certain 

point, in our case 1.55λ, there is the stabilization of transverse dimension with short-

ening the length of a segment. 
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Studies on the reduction of the refractive index of the diffraction axicon show that 

after reaching a limiting value of the refractive index (in this case, when n = 1.68) the 

focal spot size is stabilized and not decreases. 
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