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Abstract. Search fast algorithms for signal reconstruction without phases rele-

vant now. Algorithms recovery are important in the treatment of a variety of 

signals. Main frames property that makes them so useful in applications - re-

dundancy. Well selected frame can provide numerical stability for signal resto-

ration and getting the important characteristics of the signal. 
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Introduction  

Search of algorithms for doing signal reconstruction without phase is the actual task. 

Now the large number of articles on search of algorithms of the solution of this task is 

let out. Recently the theoretical possibility of the solution of this task was shown [4].  

It is shown that the family of frames recovers the signal on absolute value of frame 

coefficients in polynomial time [1]. 

Another line of research is to find the minimum amount needed to restore the projec-

tions or vectors of information. For analytical, algebraic and probabilistic methods 

will be attracted to this search. Increasing the growth rate transmit and process digital 

information to explain the relevance of the proposed topic. 

A search and theoretical basis of new methods of data recovery, hidden in the phases 

of the transmitted signals, and is not available for measuring physical devices availa-

ble to the public. The methodology are the latest advances in the study of complete 

linearly dependent systems called frames spaces. 

Injective and the stability of mapping "measuring amplitude" 

signal 

Sampling and quantization of the analog signal lead to consideration of the signal as 

element of some finite-dimensional space. In such space, generally speaking, complex, 
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the complex scalar product and the corresponding Hermite norm is entered. On or-

thonormalized basis (ONB) 
N

iiu 1}{   
"signal" uniquely is represented the sum 

i

N

i
i uuvv 




1

,  

Complex coefficients of the described representation iuv,
 
give the possibility  of the 

complete signal reconstruction and often are understood as "measurements" of the 

signal. Real measurements turn out real, both the gap between iuv,  and amplitudes 

of measurements iuv,  is insuperable at signal reconstruction. 

Representing the signal in different bases, it is possible to obtain about it various in-

formation. So, transition from representation on basis vectors to representation in Fou-

rier's basis, allows to receive the frequency characteristics of the signal giving ample 

opportunities for its digital processing. 

The last years the significant amount of works is devoted to the decision the following 

task: to construct such systems of "measuring" vectors  M

iifF
1

  , which allow to 

recover the arbitrary signal Vv  on the set of real numbers ifv, . 

In class ONB such task has no decision. 

The main problem delivered in [13] is still far from the final decision: 

To find necessary and sufficient conditions on system of vectors of representation 

 M

iifF
1

  (so-called "measuring vectors") which provide the injective and stability 

of mapping of "measurement of amplitude" of the signal x 
2

,:)))((( ifxixA 
 

Definition range of this mapping is the space  R = V N
 or 

NC . Let's notice, however, 

that (y) = (x)   if cx =y  for some scalar c with the unit module. Therefore, strictly 

speaking, mapping  R  V : M cannot be injective. 

Therefore we will consider as definition range   or /{±1}R N , or 
1N /TC , where 

1T  

- the complex unit circle on the complex plane. At such agreement questions about 

injectives and stability of mapping   are informative. 

To reconstruction the signal x it is impossible if mapping   is not injective. 

Definition 1. A set of vectors  M

iifF
1

  in 
NR  (or 

NC )  yields phase retrieval if 

for all 
NRyx,   (or 

NC ) satisfying 
M

ii

M

ii fyfx
11

,,


    then cx =y , where 

1c    in 
NR  and  

1Tc  in 
NC . 

Definition 2. Let  M

iifF
1

  be a family of vectors in 
NR  (or 

NC ) satisfying: for 

every x and y in 
NR  (or 

NC ) execute equalities: 
M

ii

M

ii fyfx
11

,,



 

1) If this implies there is a   with | |=1 so that x  and y   have the same phases, 

we say  M

iifF
1

  does phase retrieval; 
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2) If this implies there is a   with | |=1 so that yx  , we say  M

iifF
1


 
does 

phaseless reconstruction.  

Frames 

Definition 1. A family of vectors  M

iif
1

 is a frame for a Hilbert space HN if there 

are such constants 0 < A ≤ B < ∞, if for all x ∈ H: .||||,|||| 2
2

1

2 xBfxxA
M

i
i 



 

A and B are called frame borders. The greatest of the lower bounds is called the opti-

mum lower bound, and the smallest of the upper bounds - the optimum upper bound. 

If A=B this is a A-tight frame and if A=B=1, it is called a Parseval frame.  

The numbers  M

iifx
1

,


 are called the frame coefficients. 

If all the frame elements have the same norm we call this an uniform frame. 

In finite-dimensional space the concept of the frame is equivalent to concept of com-

pleteness of system, i.e. equality ).}{(}{ 11
NM

ii
NM

ii CfspanRfspan    

Definition 2: Let  M

iif 1
 - the frame, linear mapping: 

 M

ii
MN fxxTIlHHT

1

2 ,)(),(:


  

is called the analysis operator. 

Definition 3. Linear mapping: 

  i

M

i
i

M

ii
NM fccTHIlHT 





1

1
*2* )(,)(:  

is called the synthesis operator. 

The composition T  and 
*T defines the frame operator – the positive, self-conjugate 

reversible operator: 





M

i
ii

NN ffxTxTSxHHTTS
1

** ,::  

It provides the exact formula for reconstruction: 

.,
1

1




M

i
ii fSfxx  

Definition 4. A family of vectors  M

iifF
1

  is said uniform equiangular tight frame 

if 

1) 
______

,1||||:0 Mif i   ;  

2) :0c  such that for all pairs of frame vectors jf  and kf , j≠k, we have:  

., cff kj 
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It is known that there is the upper bound for number of vectors in the uniform equian-

gular tight frame  M

iifF
1

  on the N-dimensional Hilbert space of H. In the real 

case it 
2

)1( 


NN
M , in the complex case - 

2NM  ([10], [3]). Creation of the 

maximum number of vectors for the uniform equiangular tight frame very complex 

and unresolved challenge in the theory of frames. 

Generic frame 

In work [1] is shown that a generic frame will give signal reconstruction without 

phase and will achieve this in polynomial time.  

We consider the non-linear mapping   taking a vector to the absolute value of its 

frame coefficients: 

.,)(),(:

1

2

M

i

ifxxIlH









 

 

If it is necessary to associate   to its frame  M

iifF
1

  we will write 
F . 

Let ~/HH r   be the quotient space obtained by identifying two vectors if they 

differ by a constant phase factor. That is, x~y  means there is a scalar c:|c|=1  so that 

y=cx. 

For real Hilbert spaces, 1с , then }1/{ HH r . 

For complex Hilbert spaces 
iec  , then }/{ 1THH r   - the complex unit circle on 

the complex plane. In quantum mechanics, these projective rays define quantum states 

[12]. 

The nonlinear mapping   extends to rH
 
as 

.ˆ,,)ˆ(),(:

1

2 xxfxxIlHH

M

i

i
MN

r 












  

If 
NRH   the set I  consists of М-elements, },...,1{ MI  . Then 

MRIl )(2
. 

The set );,( RMNGr
 
of N-dimensional linear subspaces of 

MR  has the structure of 

an N(M−N)-dimensional manifold. 

The set );,( RMNGr  called the Grassmann manifold. 

For a frame  M

iifF
1

  of 
NR  the analysis operator satisfies: 

,,)(,:
1

i

M

i
i

MN efxxTRRT 


  

where },...,{ 1 Mee is the canonical basis of 
MR . 

The considered nonlinear mapping in the real case: 
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,}1/{: MNF RR  .ˆ,,)ˆ(
1

xxefxx i

M

i
i

F 



 

Two frames and are equivalent if there is an invertible operator O  on H with 

ii gfO )( , for all },...,1{ MI  . It is known that two frames are equivalent if and 

only if their associated analysis operators have the same range [2, 9]. 

In [4] it is shown that two equivalent frames F  and G  have the property that 
F  is 

injective if and only if 
G  is injective. 

If 
NCH   then for an M-element frame  M

iifF
1

    the analysis operator is defined 

also, as well as for the real case:   

.,)(,:
1

k

M

k
i

MN efxxTRRT 


  

The scalar product by definition: .,
___

1
k

N

k
k yxyx 



  

The nonlinear map: 

,}/{: 1 MNF CTR  ,ˆ,,)ˆ(
1

xxefxx k

M

k
k

F  




 
where two vectors xyx ˆ,   if there is a scalar 1:  cCc  so that cxy  . 

Definition 1. The frame is called generic frames if   ULf
M

ii 
1

, where U - Zar-

iski open set and ),( MNGrU  .                          

The main results from [4]: 

Theorem 1. (The real case) [13] If 12  NM , then for a generic frames 

 M

iifF
1

  nonlinear mapping   is injective. 

Proof. Suppose that x  and xhave the same image under  . Let Maa ,...,1  
be the 

frame coefficients of x  and Maa  ,...,1  the frame coefficients for x . Then ii aa   

for each i .  

In particular there is a subset },...,1{ M of indices such that i
i

i aa )()1(  . 

Then two vectors x   and x  have the same image under   if and only there is a 

subset },...,1{ M  such that Maa ,...,1  
and M

M aa )(
1

)1( )1(,...,)1(  
 
are both 

in W  the range of coefficients associated to F. 

To finish the proof we will show that when 12  NM  such a condition is impossi-

ble for a generic subspace 
NRW  .  

This means that the set of such W ’s is a dense (Zariski) open set in the Grassmanian 

Gr(N,M). In particular the probability that a randomly chosen W  will satisfy this 

condition is 0. 

To finish the proof of the theorem we need the following lemma. 

Lemma 1. If 12  NM  then the following holds for a generic N-dimensional sub-

space 
NRW  . Given Wu , then Wu )(  

iff uu )( . 
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Proof. Suppose Wu  and uu )( , but Wu )( .  

Since   is an involution,
 

))(( uu   is fixed by   and is nonzero. Thus 

0 LW .  

Likewise ).()(0 uuuu C  
 

Hence, 0
C

LW 
.  

Now 
L  and 

C

L  are fixed linear subspaces of dimension M  and  . If 

12  NM  then one of these subspaces has codimension greater than or equal to N. 

However a generic linear subspace W of dimension N has 0 intersection with a fixed 

linear subspace of codimension greater than or equal to N. 

Therefore, if W is generic and x , Wx )( , then xx )(  which ends the 

proof of  lemma. 

The proof of the theorem now follows from the fact that if W is in the intersection of 

generic conditions imposed by the proposition for each subset },..,1{ M  then W 

satisfies the conclusion of the theorem. 

Definition 2. The family of vectors   NM

ii Rf 
1  

is called the set with the full spark, 

if every subset from N  vectors is full in 
NR . 

For the analysis injectives complement property is important. 

Definition 3. We say  M

iifF
1

  in 
NR  (

NC )  satisfies the complement property if 

for all subsets M}, . . . {1,  , either iif }{  or Ciif 
}{ full in 

NR  (
NC ) . 

Theorem 2. Consider  M

iifF
1

  - set of vectors in 
NR . The mapping 

MNN
r RRRA  }1/{:  defined by 

2
,:)))((( ifxixA  , Mi ,..,1 . 

Then A  is injective if and only if then F  satisfies the complement property. 

Proof. )(
 
Assume that F  is not complement property. Then there exists 

},..,1{ M  such that neither   iif  nor   Ciif 
 not full  in 

NR . 

This implies that there are nonzero vectors NRvu ,
 
such that 0, ifu  for all 

i  and 0, ifv  for all 
Ci  . 

For each i  we then have 

222
________

22
,,,,,2,, iiiiiii fvfufvfvfufufvu   

From this it follows that  
22

,, ii fvufvu 
 
for every i , we have 

)()( vuAvuA  . Moreover, u  and v  are nonzero by assumption, and so 

)( vuvu  . 

)( Assume that A  is not injective. Then there exist vectors 
NRyx ,  such that 

yx   and )()( yAxA  . Taking },,:{: ii fyfxi  .  
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We have 0,  ifyx
 
for every i . Otherwise when 

Ci  , we have 

ii fyfx ,,   and so 0,  ifyx . According to the assumption, yx   there-

fore 0 yx  and 0 yx . 

Thus, iif }{
 
and Ciif 

}{ , are not full in 
NR . 

Theorem 3 [13]. Consider   NM

ii CfF 
1

 and the mapping 

MNN
r RTCCA  1/:

 
defined by 

2
,:)))((( ifxixA  , Mi ,..,1 . 

Viewing 
M
iii uff 1

* }{   
as vectors in 

NR2
, denote 

M
iiiR uffspanuS 1

* }{:)(  . Then the 

following are equivalent: 

(a) A  is injective. 

(b) 12)(dim  MuS
 
for every }0{\NCu . 

(c) 
 }{)( iuspanuS R  for every }0{\NCu . 

Lemma 2. Everyone set with the full spark  M

iifF
1


 
in 

NR  with 12  NM  
satisfies to complement property. 

Proof. Let's assume opposite: exists },..,1{ M
 
 such that neither   iif  nor 

  Ciif 
 not full in 

NR . 

By definition of the full spark, from this it follows that 1 N
 
and 1 NC , 

that is 22  NM  that contradicts the condition. 

Theorem 4. In the real case if  M

iifF
1


 
 in 

NR  and 22  NM , then mapping is 

not injective. 

If 12  NM , then mapping A  is injective if and only if then  M

iifF
1


 
- full 

spark. 

Proof. If 22  NM , then the set },..,1{ M
 
can be broken into sets   and 

C  so 

that the cardinality of  everyone sets did not exceed 1N . Any of sets iif }{ , 

Ciif 
}{

 
cannot be full.  

If 12  NM   and  M

iifF
1


 
- full spark, then the injective A  follows from the 

lemma 2 and theorems 3.  

Back, if A - injective, then  M

iifF
1

  satisfies to complement property. Let's take 

any subset },..,1{ M
 
with N . Then 1 NC  and Ciif 

}{
 
can’t be full. 

Therefore, iif }{
 
- full, and  M

iifF
1


 
- full spark. 

We do not know the exact minimal bound for the complex case. Also, in the real case 

there is a simple direct method for checking if A  is injective for a given frame [4]. 
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Consequence 1. If F is a M-element frame for 
NR  with 12  NM  having the 

property that every N-element subset of the frame is linearly independent, then 

)(: 2 IlHHA M
r

N   is injective. 

Theorem 5. (Complex frames) If 24  NM  then for a generic frame F, the nonlin-

ear map A  is injective. 

The (4M − 4) Conjecture. Consider   NM

ii CfF 
1

 and the mapping 

MNN
r RTCCA  }/{: 1

 defined by 
2

,:)))((( ifxixA  , Mi ,..,1 . If 2M , 

then the following statements hold: 

(a) If 44  NM , then A  is not injective. 

(b) If 44  NM , then A  is injective for some frames. 

In work [1] is shown that a generic frame will give signal reconstruction without 

phase in a polynomial number.  

Let H be a fixed N-dimensional vector space which is assumed to be either real or 

complex and let },..,{ 1 Nee  be a chosen orthonormal basis for H. We will henceforth 

refer to this as the “standard basis” for H. 

Theorem 6 [1].  

(a) If 
NRH  , 

2

)1( 


NN
M  and  M

iifF
1

  is a generic frame, nonlinear map P  

is injective. Then vector Hx  can be reconstructed (up to sign) from the set 
M
iifx 1|},{|   of modules of the frame coefficients in a polynomial number 

 )) (O(N 6
of steps. 

(b) If 
NCH   , 

2NM   and  M

iifF
1

  is a generic, nonlinear map P  is injective. 

Then vector Hx  can be reconstructed (up to multiplication by a root of unity) from 

the set 
M
iifx 1|},{|   of modules of the frame coefficients in a polynomial number

 )) (O(N 6

 
of steps. 

Conclusion 

Recovery of the signal is possible in case of lack of phase information which is lost 

during processing of the signal. Examples of such signals without phase are processes 

of transfer and processing of images. Recovery of the lost information is necessary for 

the subsequent work with data. At loss of part of information the above described 

mathematical methods and estimates give information that it is possible to recover the 

signal on modules of frame coefficients for polynomial number of steps   

Further detailing is necessary for frames of the general provision. 
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