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points in the complex plane by the degree-like moments. We discuss applica-
tions of these results to determine the similarity of flat polygonal lines in con-
tour analysis method.
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1 Introduction

A moment problem is closely associated with many questions of functional analysis
[1], integral geometry [2, 3], problems of interpolations, and function classifications
[4]. Several problems concerning the uniqueness of solutions of operator equations
can be reformulated in terms of determining continuous linear functional f: X — C

by the known values on a system of basic elements {zm} of a normed linear
0

melcN
space X :

f(zi) = Sir- 1)
In applications X is a space of complex-valued functions that are continuous on

compact set K . Such space with the uniform norm is denoted as C(K). By C(K)"

we denote the linear space that topologically conjugates to C(K).So C(K)” contains
all continuous linear functionals f :C(K) — C. Based on the Riesz-Radon theorem

we know that C(K)" is isometric to the space of Radon measures with compact sup-
porton K [1, 5]. Hence any linear functional can be uniquely represented in the form

f(2)=[z(t)du, (t), )
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here p; is a measure with compact support K; < K that is uniquely defined by the
functional f .

In this paper we will be interested in the case of (1) or (2), where K cR?,
Zn (1) =2 (%, y) = 2™ =(x+iy)", i®=-1 and p(t) is a function of bounded
variation with compact support K; c K < R2. The integral in (2) is understood as an
integral of Lebesgue-Stieltjes.

If K¢ ={tj It; =(xj,yj), jel..k} is a finite set of points, then the integral in (2) is

reduced to the finite sum

k Kk
f@=22(t) e (1) =27 uj, )
j=1 j=1
where z; = x; +1iy;, and pjf e C. So (1) takes one of the forms
feM= [ 2"(t)dp(t)= [ 2" (t)duq(t)=S,, @)
KcR? K, cR?
or
S f
f(z") =32 pn] =s,. (®)
j=1

We will show the uniqueness of a linear functional f (and so K;) that is determined

from (5) by a known finite number of values s, . Then we extend this result to the
special case of (4), when the compact support K; is a polyline with a finite number

of segments, and the integral is understood as a line integral along a plane curve.
Note that the moment problem (5) arises in a contour analysis based on the integral
representations for Gaussian beams [6].

It is easy to give an example of different compact subsets K; c K ¢ R?, which pro-
duce an equal moments S, to a corresponding functionals f , even in the case
mel=N,.
As a compact K = R? we consider a circle K :{(x, y) x> +y? < r02} and define a
family of subcompacts:

K :{(x, )X +y? =< roz},

K" ={(x, Y <x®+y*<rf < roz},

K2 :{(x, y) X +y* <l < roz}.
Then we define continuous linear functionals

fi(2)= [ z(xy)dLeC(K)", (6)

n
Kl
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£2% (z) = ” z(x,y)dxdy e C(K)", )
Kzrzvfa
fJ4 (z) = H z(x,y)dxdy e C(K)", (8)
K

where the integral in (6) is understood as a line integral.
For all me N, functions z,(x,y)=2z" =(x+iy)m form an orthogonal system over
the scalar products

(m22),= [ 2(xy)z(xy)dL,

(z,2,), = J;.[B z (X, )z, (x, y)dxdy,
(2,2,), = J'J; 2 (%, y)2z,(x, y)dxdy,

So for all m >0 we have the zero moments
fi(z") =8y = [ 2"dL=0,

K2
f25(z2") =85 = [[ 2" dxdy=0,
K;Z\'I%
f3#(z2") =85 = [[ 2" dxdy =0,
K@

and non zero moments S =2nr, S¢ = n( r? —rzz), 83 =nr2, for m=0.

2
. K
Then we fix 0< r1<% and set 1, =2r , rf=rZ+r? . It's clear that for all

0<rf <1 —2r we obtain an infinite number of different continuous linear function-
als f%, 2%, 38 with compact supports K, K7"®, Kz, and equal moments
f2(@"), 25 (2"), 1 (2").

This is explained by the fact that the set of functions z,(x,y) =z" =(x+iy)m is not
a dense set in C(K) . According to the Weierstrass theorem, a dense set is formed by

the system of polynomials py,(x,y)=x"y", m,neNy. Based on the representa-

tions x =Re(z) :% Ly = Im(z):%, we can say that the system of functions

Pun(X,¥)=2"Z" has the same quality.

Thus any continuous linear functionals f e C(K)", including those that are defined
by (6)-(8) will be uniquely determined by the system of values
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f(z"Z7") =S, mneN,. )

If we consider the linear functionals defined by integrals over plain domains or recti-
fiable curves, then the system of moments (9) will uniquely determine bounded curve
or plain domain.

2 Moment problem for a finite set of points

Let’s consider a moment problem in the following form. From a given system of
equations

k
ZZT.Hj:sm,mGO..M,M eN, (10)
=

k
we want to determine a set of pairs of complex numbers S = {(zj M )} . under the
J:

assumption that all the numbers z; are pairwise distinct, and p; = 0. In (10) we put
2° =1 forall zeC.

Two sets S:{(Zj’uj)}tzl and §:{(Zj,ﬁj)} ) will be considered as equivalent

S ~ S, if there exists a total bijection h:1.k —1.k that is Zj =Zygj and pj = fip(j

k
j=

(in other words, if they match up to a permutation).

We are interested in the uniqueness of the solution for the problem above, which is
understood as equivalent in the above sense.

Suppose that there are two sets S and S that satisfies (10). Therefore we have the

following system of equations
k

(2] -uy =27 ;) =0, me0.M, (11)
j=1

Denote by {zj}m{fj} the intersection of sets {zj | el..k} and {Zj | ] el..k}. Now
we define the sets of indices J,, :{j|zj e{zj}m{zj}}, J;, ={j|Zj e{zj}m{zj}},
J,=1.k\J,,, J, =1k\J,,.

77

Let s=|J,;|=|J3,
$>0), and J,; =J,, =9 (s=0). It is clear that in this case J, =J; =s+1.k (
s<k)and J,=J, =0 (s=k).

Denote by h:J,; — J,, the total bijection that takes each j, to j, in accordance with

<k . Without loss of generality, we assume that J,, =J,, =1..5 (

the rule z; =Z; . Then the system of equalities (11) takes the form
1 2
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PIRARTEDIE AR T

jed, jed,

J SN

Further denote
Hj —}Nlh(j),lﬁ jss

(12)

(ko) K+1< <2k

27N 1< <k 1<i<M +1
i T it i - ’
ZL(j7k+S),k+1SjS2k—S,1SISM +1

and rewrite (12) in the form
2k-s
j=1

We note that the leading principal minors of the matrix (oci j) are Vandermonde deter-

minants composed by powers of distinct numbers. Thus the rank of this matrix is equal
to min(M +1,2k —s). Let us consider (13) as a system of linear equations with varia-

bles &;. If M +1>2k—s, the system (13) can have only the trivial solution. In this
case J,=J;, =0, J,; =J;, =1.k,and forall jel.k we obtain

Zj = In(j)y B =Py

It’s mean that S = S .

Obviously that M +1>2k—s for all s>0, if M +1>2k . Hence, if M >2k-1,

then the moment problem (10) can have only one solution. The converse may be
proved in such a way as is done in [7].

3 Moment problem for polyline with a finite number of
segments
: Lk p2 k
Let’s consider the unclosed polyline L° < R“ with k nodes {tj :(xj,yj)}_ K and
J:
without self-intersections. We assume that associated nodes t;_;, t;, t;,; does not lie

on the same straight line, and each node can belong to no more than two segments of a
polyline. So polyline has k —1 segments.
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As before, we define the map z:R?—>C in accordance with the rule
Z= z(t) =z(x,y) =Xx+iy . For each of k-1 segments we consider the parameteriza-
tions L :[0,1] »R? that given by © > LY (1) =t; +(tj, —t; )
Let’s denote
Z :z(tj):z(xj,yj):xj +iyj,

k
®j :arg(zj+l_2j)v

and take a system of complex moments S,, with me0.M < N,
k-1

1

k

Sp=[2"dL" = X[ 7] (<)|dz; (<)] (14)
L i=lo

After simple calculations we obtain

1 .
S =—— [—eT™ 'Zm+1+
" m+l ( ! 1)

k=1, . .
—iQ; —iQ; —i
+§ (e P _e (‘")-z'j“+1+e 1Pa -ZE‘”).
=1

Let s, =m-Sp4, W= —elor Iy —e P, B —e ' _g7 with je2.k-1.1ts
easy that

k ) k-1 . . .
ZHJ :_e—I(pl + Z(e 104 —e 10 )_’_e—l(pKA =O,
j=1 j=2

and therefore (15) can be written as (10).
By assumption of polyline we have

- 7, -1
= _eTin _ _| 2 1| #0, (16)
-7
: 7, —2
by =€ _ncadl L, (17)
Zy —Zkq

iy _ gmiey _ 2 -2 _|ZJ‘+1‘ZJ

2j-2j4 Zjy-Z

with je2.k-1.
From the results of the previous section it follows that no exists more than one sets of
. k . k . .
points {ZJ}H and the weights {y; }H that satisfy (14) with m0..2k .
k
It is easy to prove that the pairs {(z il )} . completely determine the nodes and seg-
J:

ments of the polyline L*. Indeed, n, uniquely determines the value of el :—ul’l and
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thus the direction W:(—Re(pl’l),—lm(ul’l)) from node t, =(Re(z),Im(z)) to the

node t,. Thus t, =t +r-w for some real value r >0. At least one such point must

_— k . .
exist in the node set {tj}_ If there are several nodes that satisfy the relations

t; =t +r; -w with some r; >0, then we should choose the one which corresponds to
the minimum value of r;. This follows from our assumption that the points t;_;, t;,
t;.1 should not lie on the same straight line and each node can belong to no more than
two segments of a polyline. The same applies for p, , which together with z, uniquely
identifies the segment in the polyline (t, ;.1 ). As for the other pairs of values, we can

: i n-j
use the obvious equality e '?i = —Z U = Z un_s and consistently hold the previous
s=1 s=0

arguments, starting with one of the node t; or t, .
A similar result holds for the closed polyline X  defined by the nodes

k
{tj = (xj Y )} . with t; =t, . In this case, the analogue of (15) takes the form (10) if
=

we substitute k—1 for k and put p, =e %t —g7%

4 Applications to the recognition of similarity for planar
contours

A moment problem has a relation to the image analysis [8], including analysis of simi-
larity discrete planar contours [6, 9].
We say that two sets M; = C and M, c C are called similar, if there exist Ay,1, € C

such that M, ={z'|z'=Aq +1x-2,2€ M, } . Here %, describes parallel transport of

points M, , |1<0| is equal to the coefficient of similarity, and arg(Ko) corresponds to
the angle of rotation («, = 0).
If the similar sets M;, M, are finite, then

1 1
I(s:l ks:l

1 k
Ko - ZJ —Ezlzs y
5=

k Kk

and so without loss of generality, we assume that >z i :Zz] =0 or the same
j=1 j=1

Ao =0.
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Let’s consider two unclosed polyline L¥, L'*< R? with the same number of segments.

As follows from the previous section, each of them is uniquely determined by a system
of moments

k k
ZZ?'MJ ZZZT'M(Zj—l’Z"ZjH.):Sm! (19)
j=1 j=1

koo koo

Zizi “Hj :Zizj '“(Zj—l’zjlzjﬂ)zsm: (20)
i= j=
with me0..2k -1 and p(zj,l,zj,zm) that satisfy (16)-(18)
Given that

K

[ ol

H(KO'Zj—lyKO'Zj’KO'ZjJrl): ” H(Zj—llz"zjﬂ)v
0

we finally obtain the similarity criterion for polyline X, L'* inthe following form
S = k0| kg " -8y, me 0.2k -1, (21)
Criterion (21) also holds for closed polylines.
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