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Abstract. The ignition of combustible gas containing liquid fuel droplets is in-

vestigated. The analysis is based on the theory of integral manifolds of singular-

ly perturbed systems. This approach allows us to define different types of chem-

ical regimes including the critical mode. The relation between the critical re-

gime and the phenomenon of delayed loss of stability in the dynamical model is 

shown. 
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Introduction  

In this paper we present a qualitative investigation of combustion dynamics in a mul-

tiphase medium. The investigation of the ignition process in a gas medium was car-

ried out by many authors, see, for instance, [1–16] and references therein. However, 

the influence of liquid droplets within such a context is less studied [17]. The dynam-

ics of such systems is determined by two processes: heat loss due to the evaporation 

of the flammable liquid medium (droplets) and heat release associated with an exo-

thermic oxidation reaction in the gas phase [17, 18]. Competition between these pro-

cesses determines the main dynamical features of the systems. 

Model 

A concise physical model for the thermal explosion in a two-phase medium (combus-

tible gas mixture - combustible liquid drops) is suggested using an adiabatic approach. 

The main physical assumptions of the model are as follows. The combustible liquid 

droplets are considered to comprise a monodisperse spray, whose effect on the blow-

up process is to be investigated qualitatively. As usual [2] for thermal explosion pro-

cesses, we neglect the pressure change in the reaction volume and its influence on the 

combustion process. We assume that the thermal conductivity of the liquid phase is 

much greater than that of the gas phase. Thus, the heat transfer coefficient in the liq-
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uid gas mixture is supposed to be defined by the thermal properties of the gas phase. 

It is assumed that the quasi-steady state approximation is valid for the vaporizing 

droplets [18]. The drop boundary is assumed to be on a saturation line (i.e., the liquid 

temperature is constant and is equal to the liquid saturation temperature). The com-

bustion reaction is modeled as a first order, highly exothermic chemical reaction. The 

exothermic oxidation reaction is usually modelled as a single step reaction obeying an 

Arrhenius temperature dependence. Heat losses were assumed proportional to the 

temperature excess over the ambient temperature (Newtonian cooling) [1, 4]. 

Under these assumptions a mathematical model of the process has a form [18]:
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where T is a temperature; dR  is a radius of the drops; C is a concentration; Z is pre-

exponential factor; E is an activation energy; Q is a energy of the combustion; L is a 

liquid evaporation energy; R is the universal gas constant; c is a thermal capacity; dn  

is a number of drops per unit volume; t is a time;   is a volumetric phase content;   

is a thermal conductivity;   is a density;   is a molar mass. The subscripts here 

denote: d - liquid fuel droplets; f - combustible gas component of the mixture; g - gas 

mixture; L - liquid; p - under constant pressure; ox - oxidizer; 0 - initial state. 

Suppose that the fuel is a deficient reagent in a large amount of oxidant, thus equation 

(4) can be omitted. 

Following to the classical theory Semenov [1] we define the dimensionless variables  
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and the system (1)-( 3) can be rewritten in dimensionless form: 
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where   is the dimensionless fuel gas temperature; r is the dimensionless radius of 

the drops;   is the dimensionless concentration of flammable gas;   is the dimen-

sionless time;   is the dimensionless parameter equal to the final dimensionless adia-

batic temperature thermally isolated system after the explosion;   gives the initial 

temperature; 
1 , 

2  characterize the interaction between the gas and liquid phases; 

 is a parameter characterizing the ratio of the energy of combustion gas mixture to 

the liquid evaporation energy. 

The initial conditions for the equations (6)-(8) are:  

(0) 0, (0) 1, (0) 1.r     

It should be noted that the system (6)-(8) has the energy integral: 
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Taking into account (9) we can reduced the system (6)-(8) [19-23]: 
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Thus, the dynamic of the system depends on five dimensionless parameters: 

𝛽 ≪ 1, 𝛾 ≪ 1, 𝜀1, 𝜀2, 𝛹. The property values of γ and β are small compared to unity 

for most gas mixtures because of the high activation energy and the exothermic chem-

ical reaction [3, 4, 6, 17]. The smallness of the parameter γ implies that (10), (11) is a 

singularly perturbed system, which allows us to apply the geometric methods of the 

singular perturbation theory for its analysis [19-23]. 

Analysis 

The degenerate equation [21, 23] 
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describes the zero-approximation of slow integral manifold of the system, a slow 

curve. The analysis of the slow curve allows us to determine the basic types of chemi-

cal reaction regimes depending on the values of the additional parameters of (10), 

(11).  

For 0   the slow curve has a shape as shown on Figure 1. The parts PT and QS of 

the slow curve are stable while the part TQ is unstable. Depending on the ratio of 

other parameters following cases are possible: thermal explosion with delay or typical 

thermal explosion. In the first case a trajectory of the system, starting from the initial 

point A in the basin of attraction of the stable part PT, will be attracted to it with the 

velocity of the fast variable (see path AB) and then follows along it with the velocity 

of the slow variable (see path BT). After this moment the trajectory will jump from 

the slow integral manifold (see path TC). The thermal explosion will have happened 

long before the point C is reached because the temperature’ value at the point C ex-

tremely high. 

The typical thermal explosion occurs if the initial point is located below the basin of 

attraction of the stable part PT (see the trajectory DE on Figure 1). 

  

Fig. 1. Slow curve and the trajectories of (10), (11) with 0 
 

Figure 2 demonstrate the trajectory of the reduced system (10), (11) and the solutions 

of the full system (6)-(8) in the case of thermal explosion with delay for 

1 20.05, 0.01, 2.0, 0.8, 0.19.        
 

Figure 3 shows the slow curve and a trajectory (AB) of the system (10), (11) in the 

case ψ>1. This case also corresponds to the typical thermal explosion and the behav-

iors of the solutions of (6)-(8) are the similar as in previous case.
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Fig. 2. Thermal explosion with delay: (top) the dimensionless radius r vs.  and  

(bottom) the solutions of the system (6)-(8) vs. τ 

 

Fig. 3. Slow curve and a trajectory of the system (10), (11) with ψ > 1 

For 20 1   
 
the slow curve is shown on Figure 4. In this case three regimes are possible 

depending on the ratio of the parameters: the typical thermal explosion (the trajectory CD), the 

slow combustion regime (the trajectory CTP), and the critical regime (the trajectory CTQ).  
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Fig. 4. Slow curve and the trajectories of the system (10), (11) with 

 0 < ψ < 1 − ε2 

Figure 5 demonstrate the trajectory of the system (10)-(11) and the solutions of the 

system (6)-(8) in the case of slow combustion regime. Without loss of generality the 

parameters of the system are chosen to be 10.05, 0.01, 0.19, 3.5,       and

2 0.8.   

 

 

Fig. 5. Slow combustion regime: (top) the dimensionless radius r vs.  and  

(bottom) the solutions of the system (6)-(8) vs. τ 
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The critical regime separates an explosive regime from a nonexplosive one. The cru-

cial result is that the unstable slow manifold may be used to construct the separating 

regime between the safe regimes and explosive ones. 

Figure 6 shows the trajectory of the system (10), (11) and the solutions of the system 

(6)-(8) in the case of critical regime ( 1 2.2,  other parameters are the same as in 

Figure 5). The critical trajectory is characterized by a comparatively rapid (but not 

explosive) flow of the reaction till the essential degree of conversion takes place and 

then a jump slow-down and a transition to the slow flow of the reaction to near the 

origin. 

 

 

Fig. 6. Critical regime: (top) the dimensionless radius r vs.  and  

(bottom) the solutions of the system (6)-(8) vs. τ 

The critical value of a control parameter, say 1 , corresponding to the critical trajecto-

ry may be found in the form of the asymptotic expansion [24]: 
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Such approach to modeling of the critical phenomena in combustion problems has 

been applied in [7, 12, 21, 23, 25]. 

Conclusion  

The dynamical model of the ignition in the two-phase medium was considered. The 

study of the zeroth order approximation of the slow integral manifold of the system 

(the slow curve) has allowed to define the three basic types of chemical reaction 

modes: safe slow combustion mode, typical thermal explosion regime and thermal 

explosion regime with a delay. It was shown that the realizability conditions for these 

regimes depend on the values of the additional system parameters. It was shown that 

there is also the critical regime which divides the area of safe reactions and the area of 

dangerous, explosive regimes. The conditions of the existence of the critical regime 

have been obtained via the geometric theory of singular perturbation. The crucial 

result is that the unstable slow manifold may be used to construct the separating re-

gime between the safe regimes and explosive ones. 

Acknowledgment 

This work is supported in part by the Russian Foundation for Basic Research (grant 

14-01-97018-p) and the Ministry of Education and Science of the Russian Federation 

under the Competitiveness Enhancement Program of Samara University (2013–2020). 

References 

1. Semenov NN. Zur theorie des verbrennungsprozesses. Z. Physik. Chem., 1928; 48: 

571-581. [in German] 

2. Frank-Kamenetskii DA. Diffusion and Heat Exchange in Chemical Kinetics, 2nd ed. 

New York: Plenum Press, 1969.  

3. Gray BF. Critical behaviour in chemical reacting systems: 2. An exactly soluble mod-

el. Combust. Flame, 1973; 21: 317–325. 

4. Zeldovich YaB, Barenblatt GI, Librovich VB, Makhviladze GM. The Mathematical 

Theory of Combustion and Explosions. New York: Consultants Bureau, 1985. 

5. Gol'dshtein VM, Sobolev VA, Yablonskii GS. Relaxation self-oscillations in chemical 

kinetics: a model, condition for realization. Chemical Engn. Sci., 1986; 41(11): 2761-

2766. 

6. Babushok VI, Goldshtein VM, Sobolev VA. Critical condition for the thermal explo-

sion with reactant consumption. Combust. Sci. and Tech., 1990; 70: 81-89. 

7. Gorelov GN, Sobolev VA. Mathematical modelling of critical phenomena in thermal 

explosion thory. Combust. Flame, 1991; 87: 203-210. 

8. Gorelov GN, Sobolev VA. Duck-trajectories in a thermal explosion problem. Appl. 

Math. Lett., 1992; 5(6): 3-6. 



Mathematical Modelling                                    Agataeva AZh, Shchepakina EA. Critical… 

Information Technology and Nanotechnology (ITNT-2016)                                                    492 

9. Sobolev VA, Shchepakina EA. Self-ignition of laden medium. J. Combustion, Explo-

sion and Shock Waves, 1993; 29(3): 378-381. 

10. Sobolev VA, Shchepakina EA. Duck trajectories in a problem of combustion theory, 

Differential Equations, 1996; 32: 1177-1186. 

11. Gol'dshtein V, Sobolev V, Zinoviev A. Thermal explosion in a dusty gas. Z. Angew. 

Mathem. Mech. (ZAMM), 1996; 76(S2): 533-534. 

12. Gol'dshtein V, Zinoviev A, Sobolev V, Shchepakina E. Criterion for thermal explosion 

with reactant consumption in a dusty gas. Proc. R. Soc. Lond. A, 1996; 452: 2103-

2119. 

13. Shchepakina EA. Black swans and canards in self-ignition problem. Nonlinear Anal. 

Real World Appl., 2003; 4(1): 45-50. 

14. Kitaeva E, Sobolev V. Numerical determination of bounded solutions to discrete sin-

gularly perturbed equations and critical combustion regimes. Computational Mathe-

matics and Mathematical Physics, 2005; 45(1): 52–82.  

15. Shchepakina E, Korotkova O. Canard explosion in chemical and optical systems. Dis-

crete and Continuous Dynamical Systems - Series B, 2013; 18(2): 495-512. 

16. Shchepakina EA. Critical phenomena in a model of fuel's heating in a porous medium. 

CEUR Workshop Proceedings, 2015; 1490: 179-189. DOI: 10.18287/1613-0073-

2015-1490-179-189 

17. Sazhin S. Droplets and Sprays London: Springer, 2014. 

18. Goldfarb I, Gol’dshtein V, Shreiber I, Zinoviev A. Liquid drop effects on self-ignition 

of combustible gas. Proceedings of the 26th Symposium (International) on Combus-

tion. Pittsburgh, The Combustion Institute, 1996; 1557–1563.  

19. Kononenko LI, Sobolev VA. Asymptotic expansion of slow integral manifolds. Sib. 

Math. J., 1994; 35: 1119–1132. 

20. Voropaeva NV, Sobolev VA. A constructive method of decomposition of singularly 

perturbed nonlinear differential systems. Differ. Equations, 1995; 31(4): 528-537. 

21. Shchepakina E, Sobolev V. Black swans and canards in laser and combustion models. 

In: Mortell M, O’Malley R, Pokrovskii A, Sobolev V. (eds.) Singular Perturbations 

and Hysteresis. SIAM, Philadelphia, 2005; 207–256 

22. Sobolev VA, Tropkina EA. Asymptotic expansions of slow invariant manifolds and 

reduction of chemical kinetics models. Comput. Mathematics and Math. Physics, 

2012; 52(1): 75-89.  

23. Shchepakina E, Sobolev V, Mortell MP. Singular Perturbations: Introduction to Sys-

tem Order Reduction Methods with Applications. In: Springer Lecture Notes in Math-

ematics, Vol. 2114. Cham: Springer International Publishing, 2014; 212 p.  

24. Mishchenko EF, Rozov NKh. Differential Equations with Small Parameters and Re-

laxation Oscillations. New York: Plenum Press, 1980. 

25. Shchepakina E, Sobolev V. Modelling of critical phenomena for ignition of metal par-

ticles. Journal of Physics: Conference Series, 2008; 138: 012025. 


