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Abstract. Mathematical model of a single-link manipulator is considered. It de-

scribes the motion of the manipulator along a given path which cam be non-

smooth. Integral manifolds method is used for the system order reduction and 

design of control laws. 
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Single-link manipulator model 

The simplest model of the manipulator consists of one link. In this case the equations 

of the manipulator motions are 

𝐽1𝑞̈1 + 𝑀𝑔𝑙 sin 𝑞1 + 𝑐(𝑞̇1 − 𝑞̇𝑚) + 𝑘(𝑞1 − 𝑞𝑚) = 0,               (1) 

𝐽𝑚𝑞̈𝑚 − 𝑐(𝑞̇1 − 𝑞̇𝑚) − 𝑘(𝑞1 + 𝑞𝑚) = 𝑢, 

 

Fig. 1. Single-link manipulator model 
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where: 𝐽𝑚 –is the motor inertia; 𝐽1 –is the link inertia; 𝑀 –is the link mass, 𝑙 –is the 

link length; 𝑐 –is the damping coefficient; 𝑘 –is the stiffness; 𝑞1 –is the link angle; 

𝑞𝑚 –is the r angle, and 𝑢 is the torque input which is the controller. 

The use of the small parameter 𝜀 =
1

√𝑘
 and new variables  

𝑥1 =
𝐽1𝑞1+𝐽𝑚𝑞𝑚

𝐽1+𝐽𝑚
,    𝑥2 = 𝑥̇1, 𝑦1 =  𝑞1 − 𝑞𝑚, 𝑦2 =  𝜀𝑦̇1,         (2) 

yields the system  

𝑥̇1 = 𝑥2,   𝑥̇2 =
𝑀𝑔𝑙

𝐽1+𝐽𝑚
sin (𝑥1 +

𝐽𝑚

𝐽1+𝐽𝑚
𝑦1) +

𝑢

𝐽1+𝐽𝑚
             (3) 

𝜀𝑦̇1 = 𝑦2,   𝜀𝑦̇2 = − (
1

𝐽1
+

1

𝐽𝑚
) 𝑦1 −  𝜀𝑐 (

1

𝐽1
+

1

𝐽𝑚
) 𝑦2 − 𝜀2

𝑀𝑔𝑙

𝐽1
∗ 

sin (𝑥1 +
𝐽𝑚

𝐽1+𝐽𝑚
𝑦1) − 𝜀2 𝑢

𝐽𝑚
.            (4) 

This system is singularly perturbed with slow subsystem (3) and fast subsystem (4). 

Neglecting all terms of order 𝑂(𝜀2) in the right hand side of the last equation the in-

dependent subsystem is obtained.  

𝜀𝑦̇1 = 𝑦2,   𝜀𝑦̇2 = − (
1

𝐽1
+

1

𝐽𝑚
) 𝑦1 − 𝜀𝑐 (

1

𝐽1
+

1

𝐽𝑚
) 𝑦2, 

Solutions of which are characterized by high frequency    

√(
1
𝐽1

+
1

𝐽𝑚
)

𝜀
 

and relatively slow decay 
𝑐(

1

𝐽1
+

1

𝐽𝑚
)

2
, since this differential system has a characteristic 

polynomial  

𝜀2𝜆2 + 𝜀с (
1

𝐽1
+

1

𝐽𝑚
) 𝜆 + (

1

𝐽1
+

1

𝐽𝑚
) 

with complex zeros 

𝜆1,2 = −
𝑐

2
(

1

𝐽1
+

1

𝐽𝑚
) ±

𝑖

2𝜀
√(

1

𝐽1
+

1

𝐽𝑚
) − 𝜀2

𝑐2

4
(

1

𝐽1
+

1

𝐽𝑚
)

2

 

Since the real part of these numbers is negative, slow invariant manifold can be used 

for the analysis of the manipulator model under consideration noting that this mani-

fold is attractive and the reducibility principle holds [1]. Note that the Jacobian matrix 

of fast subsystem (4) for 𝜀 = 0  has eigenvalues on the imaginary axis with nonvan-
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ishing imaginary parts. This means that we have so called critical case [1, 6]. A simi-

lar case and some other critical cases have been investigated in [7-12]. 

Slow integral manifold 

The terms of 𝑂(𝜀2) of the fast subsystem (4) leads us to conclude that the slow inte-

gral manifold may be found in the form 𝑦1 = 𝜀2𝑌 + 𝑂(𝜀3) and 𝑦2 = 𝑂(𝜀3), where 

𝑌 = − [
𝑀𝑔𝑙

𝐽1
sin(𝑥1) +

𝑢0

𝐽𝑚
] (

1

𝐽1
+

1

𝐽𝑚
)

−1

 

Here we used the representation 

𝑢 = 𝑢0 + 𝜀2𝑢1 + 𝑂(𝜀3). 

The flow on this manifold is described by equations: 

𝑥̇1 = 𝑥2,   𝑥̇2 = −
𝑀𝑔𝑙

𝐽1+𝐽𝑚
sin (𝑥1 + 𝜀2 𝐽𝑚

𝐽1+𝐽𝑚
𝑌) +

𝑢0+𝜀2𝑢1

𝐽1+𝐽𝑚
+  𝑂(𝜀3) (5) 

Note that due to (2) 𝑞1 is expressed through new variables 

𝑞1 = 𝑥1 +
𝐽𝑚

𝐽𝑚+𝐽1
𝑦1,     (6) 

where 

𝑦1 = 𝜀2𝑌 +  𝑂(𝜀3) 

what allows presenting the system (5) on the slow integral manifold as 

𝑞̈1 − 𝜀2 𝐽𝑚

𝐽𝑚+𝐽1
𝑌̈ = −

𝑀𝑔𝑙

𝐽1+𝐽𝑚
sin(𝑞1) +

𝑢0+𝜀2𝑢1

𝐽1+𝐽𝑚
+ 𝑂(𝜀3)           (7) 

Control function 

Assume  𝑞𝑑 is the desired trajectory of the manipulator movement. Unlike [4, 5] we do 

not use a fast term added to the control input to make the fast dynamics asymptotical-

ly stable to guarantee the fast decay of fast variables  𝑦1, 𝑦2. We use the slow compo-

nent of the control function 𝑢 which is written as a sum. 

𝑢0 = (𝐽1 + 𝐽𝑚)𝑢𝑑 + 𝑀𝑔𝑙 sin 𝑞1,  

where 

 𝑢𝑑 = 𝑞̈𝑑 − 𝑎1(𝑥1 + 𝑞𝑑) − 𝑎2(𝑥̇1 + 𝑞̇𝑑). 
Setting 𝜀 = 0, using (7) and the definition of 𝑢0 and  𝑢𝑑  we obtain to an accuracy of 

order 𝑂(𝜀2) 

𝑞̈1 − 𝑞̈𝑑+𝑎2(𝑞̈1 + 𝑞̈𝑑) + 𝑎1(𝑞1 + 𝑞𝑑) = 0             (8) 
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for the difference 𝑞1 − 𝑞𝑑, since 𝑞1 = 𝑥1 + 𝑂(𝜀3) on the slow integral manifold.  

Equation (8) gives the possibility to choose coefficients in the control function  𝑢𝑑 in 

such a way that the corresponding control function gives the possibility of realizing a 

desired trajectory. Assume, for example [4, 5],  𝑀1, 𝑘100 , 𝑙1, 𝐽11 , 𝐽𝑚1, 𝑔9.8, 

𝑐2 . Setting 𝑎1=3, 𝑎2=4 for the desired trajectory 𝑞𝑑 = sin 𝑡 we obtain the following 

control law for the original variables 

𝑢 = 2𝑢𝑑 + 9.8 sin(𝑞1) = 2[− sin 𝑡 − 4(𝑞̇1 − cos 𝑡) − 3(𝑞1 − sin 𝑡)] + 9.8 sin(𝑞1) 

It is illustrated in fig. 2 that the trajectory of controlled single-link manipulator tends 

to the desired trajectory 𝑞𝑑  as t increases.  

 

Fig. 2. The graph of the desired trajectory (red line) and the trajectory of controlled single-link 

manipulator (black line) 

In many cases manipulators describe nonsmooth paths, polygonal lines, for example. 

It is impossible to use the integral manifolds method to construct approximations of 

slow integral manifold as an expansions in powers of the small parameter. One possi-

bility is the use of polynomial smoothing.  

 

Fig. 3. The graph of the desired trajectory (red line) and the trajectory of controlled single-link 

manipulator (black line) 
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It is illustrated in fig. 3, which contains the response of the controlled single-link ma-

nipulator, that the trajectory tends to the desired polygonal trajectory 𝑞𝑑 to the ap-

proximation of which is  

𝑞𝑑 = {

𝑥,   0 < 𝑥 < 𝛿 − 1

𝑎(𝑥 − 1)4 + 𝑏(𝑥 − 1)2 + 1, 𝛿 − 1 < 𝑥 < 𝛿 + 1
−𝑥 + 2,    𝛿 + 1 < 𝑥 <  2

 

Conclusion 

The manipulator model describing the manipulator motion in a nonsmooth path is 

considered. Integral manifold method is used for the system order reduction.  
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