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Abstract. HIV evolution model that describes the dynamics of concentrations 

of uninfected and infected cells is considered in the paper. The introduction of 

dimensionless variables and parameters leads to the initial boundary value prob-

lem for singularly perturbed system of partial integro-differential equations. By 

Tikhonov-Vasil’eva boundary functions method asymptotic solution with 

boundary layer is constructed. Numeric simulation of complete and reduced 

systems are also given. 
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1 Introduction 

Singularly perturbed equations arise in the mathematical modeling of processes in 

chemical kinetics, biology, physiology and other areas of science. For problems of 

this type the methods, which give an asymptotic representation of solution, are suc-

cessfully applied. The aforesaid is especially true for mathematical models of evolu-

tion biology, where an extremely slow biological evolution process proceeds against 

the background of significantly faster interactions of different nature. In this paper, 

the method of boundary functions is used for constructing asymptotic expansions of 

the solution to a singularly perturbed system of integro-differential equations with 

small parameter multiplying derivative. 

2 Model 

Let us consider the system of partial integro-differential equations
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This system is a mathematical model of HIV evolution in a continuous phenotype 

space (see [1]). It is a result of the development of the in vivo dynamic model AIDS-1 

proposed in [2]. The system (1) describes interactions between uninfected target cells 

of concentration )(tu , 𝑐𝑒𝑙𝑙 𝑚𝑚3⁄ , and infected cells with the density distribution 

),( stv , 𝑐𝑒𝑙𝑙 𝑚𝑚3⁄ . Correspondingly, 



0

),()( dsstvtV , 𝑐𝑒𝑙𝑙 𝑚𝑚3⁄ , is the total con-

centration of infected cells. In the framework of this model a phenotype space is as-

sumed to be continuous and one-dimensional ( ),0[ s  - a dimensionless quantity). 

There is a continuous influx of the target cells (from the thymus, where they mature) 

at a rate b , 𝑐𝑒𝑙𝑙 (𝑚𝑚3 ∙ 𝑑𝑎𝑦)⁄ . They die of natural reasons unrelated to the virus 

infection at a rate 𝑞𝑢, where 𝑞 > 0, 1 𝑑𝑎𝑦⁄ . Parameter ass  )( ,  𝑚𝑚3 (𝑐𝑒𝑙𝑙 ∙ 𝑑𝑎𝑦)⁄ , 

𝑎 > 0, can be interpreted as the efficiency of a single virus particle in infecting a 

target cell. Infected cells die as a result of the infection or natural reasons at a rate  

𝑚𝑣, where 𝑚 = 𝑚(𝑠) > 0, 1 𝑑𝑎𝑦⁄ . The average life spans of the uninfected and in-

fected cells are 1 𝑞⁄ , 1 𝑚⁄  respectively. Random mutations are described by the dis-

persion 𝜇𝑣𝑠𝑠, 𝜇 > 0, 1 𝑑𝑎𝑦⁄ . 

Without loss of generality and for simplicity it is assumed that only one of the param-

eters, )(s , depends on 𝑠, and 𝑚 = 𝑚∗ for all phenotypes. Besides although the mod-

el is formulated for ),0[ s , usually 𝑠 is considered to be belong to a finite inter-

val [0, 𝑙], 𝑙 = 10, for a given normalization and the condition 0),( tv  is replaced 

by 0),( ltvs . 

Introducing dimensionless variables and parameters in the same way as in [3], the 

system (1) and conditions (2) can be written in the form 
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In (3) 𝜀 = √𝜇𝑚∗ 𝑞~10−3⁄  for HIV, thereby this system is singularly perturbed sys-

tem. 

3 Reduced system 

Setting 𝜀 = 0  in (3), we obtain the degenerate (or reduced) system
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with initial and boundary conditions 
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It should be noted that the solution  𝑢̅(𝑡) of this system in general does not satisfy the 

initial condition in (4). But the solution of associated system (where 𝑣 is a parameter) 

𝑢̃𝜏 = −(1 + ∫ 𝛽𝑣𝑑𝑠
𝑙

0
) 𝑢̃ + 1,  (7) 

is 𝑢̃(𝜏) = (𝑢0 − 1 𝑓⁄ )𝑒𝑥𝑝(−𝑓𝜏) + 1 𝑓 → 1 𝑓⁄⁄  as 𝜏 → +∞, 𝑓 = 1 + ∫ 𝛽(𝑠)𝑣0(𝑠)𝑑𝑠
𝑙

0
, 

that is the isolated root 𝑢 = 1 (1 + ∫ 𝛽𝑣𝑑𝑠
𝑙

0
)⁄  is an asymptotically stable rest point of 

system (7) and the initial value 𝑢0 belongs to the domain of attraction of this root. In 

[4] it is shown that there is a passage to the limit 
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Here 𝑢̅(𝑡), 𝑣̅(𝑡, 𝑠) are the solutions of (5), (6) and 𝑢(𝑡, 𝜀),  ,, stv  are the solutions 

of (3), (4).  

Figure 1 shows the results of numerical simulations for the full and reduced systems 

(the thin line represents the plots corresponding to the full system (3), and the bold 

line represents the plots corresponding to the reduced system (5)). As we see, the 

solutions for the reduced and full systems agree fairly everywhere except a relatively 

short transition. For convenience of comparison results in this figure are shown for 

physical dimensional variables. 

 

Fig. 1. Solutions of the full system (3) and reduced system (5) 

If the initial condition is taken on or near the slow manifold, then the results obtained 

for both systems, full and reduced, coincide everywhere (see Fig. 2). 

Using the approach developed in [5], we can prove the existence and uniqueness of 

degenerated problem (5), (6). 
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Fig. 2. Solutions of the full (thin line) and reduced (markers) systems, when initial point is 

taken on the slow manifold 

4 Asymptotic expansions 

Let us find the solution to problem (3), (4) in the form of asymptotic expansions in 

powers of small parameter 𝜀. As we mentioned above, the solution of the degenerate 

system  𝑢̅(𝑡) does not satisfy initial condition in (4) and, therefore, it may be assumed 

the existence of a boundary layer structure in the solution as 𝜀 → 0. Following [6-9], 

in accordance with the method of boundary functions [10,11], such a solution can be 

found as a sum of a regular and boundary-layer series 
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the boundary-layer parts, and  t  is the boundary-layer variable. Formally substi-

tuting series (9) into equations (3) and the initial and boundary conditions (4) and 

equating the regular and boundary-layer parts   (taking into account that 

 dddtd ), we obtain the equations 
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It should be noted that regular terms in the right-hand sides of equations for boundary 

functions in (10) are calculated at t . 

Regular terms  tu0 ,  stv ,0  are the solutions of degenerate problem (5), (6). u0  is 

the solution of initial value problem 
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  0,0  sv  can be found from the corresponding equation and the fact that this 

function is the boundary-layer function. 

To construct more accurate approximations of the solution to the full system, it is 

necessary to use higher order asymptotic expansions. Expanding  ,u ,   ,, sv  

in Taylor series around 0  
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and substituting the resulting expansions into equations (3) and conditions (4), we 

equate the coefficients multiplying equal powers of 𝜀 and find 𝑘-th, (𝑘 ≥ 1), terms of 

the asymptotic expansions according to the following scheme. 

 Find ),( svk   from the equation 
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 )(tuk , ),( stvk  are the solution of the equations 
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satisfying the conditions ),0(),0( svsv kk  ,   00, tvks , 0),( tsvk . 

 )( uk  is the solution of initial value problem 
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The solution to this problem is always the boundary-layer function. 

It should be noted that only zeroth regular terms of the asymptotic expansions are 

obtained from nonlinear equations. Terms of higher order approximations can be 

found from linear equations. 

The asymptotic character of the expansions is justified as described [6-11]. 

5 Conclusion 

Mathematical models in evolution biology should necessary combine the processes, 

specific time scales of which differ by several orders of magnitude. Accordingly such 

models are postulated in the form of the singularly perturbed systems of equations. 

The results obtained for relatively simple model can be naturally extended to much 

more complex models of evolution biology. 
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