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Introduction 

For technical and organizational systems there are now two ways to solve the problem 

of multicriteria optimal control, efficiency of which is evaluated with the help of sev-

eral criteria. The first way is based on the Pareto efficiency criterion [1] with setting-

up of a corresponding set. Another way is Neumann-Morgenstern expected utility 

maximization [2] in one form or another [3-6]. The latter approach ensures the 

uniqueness of the solution of the problem. However, its use is justified in case the 

strongly coupled system model is adequate [7] for the particular group of criteria. The 

system is regarded as strongly coupled in case the criteria of its elements are compati-

ble with the axioms [8] of preference (reflexivity, connection, transitivity, etc.). It 

allows for the criteria vector the reduction towards the scalar problem of  aggregate 

utility optimization.  Solution of this problem is Pareto-efficient [10] in case it corre-

sponds to the minimax criterion [9]. Utility aggregation may be based on physical and 

technical properties of systems. In particular, in the terminal control problems [11] 

deviations from the phase coordinates target values are aggregatively set out in the 

form of a metric (distance) in the criteria hyperspace. In the problems of multicriteria 

statistical estimation [12] the moments of random variables are set out in the from of 

the variation coefficient. In general, the criteria aggregation is based on the properties 
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of the system integrity and hierarchal pattern [13], for example, interrelated technolo-

gies implementing systems. Due to the production process uniformity the elements of 

criteria are reduced to the aggregated criterion of the system. 

The special case of a strongly coupled system is the transferable utility system with 

criteria expressed  in a single measuring element, for example, in case of homogene-

ous technologies [14] performance optimization. In general any system of criteria may 

be formally reduced to the transferable system by means of setting out [9] criteria in a 

non-dimensional form by means of corresponding normalization. Transferable utility 

allows for the system elements criteria vector values redistribution (transfer), corre-

sponding to a certain Pareto-efficient control. Consequently, the problem of mul-

ticriteria control is reduced to the problem of optimal utility distribution between the 

system elements on the basis of the aggregated criterion. Solution of the latter prob-

lem will also be Pareto-efficient. 

Transferable utility distribution algorithms are intended for the systems with elements 

having equisignificant criteria (of anonymous elements). In this case the aggregation 

process doesn't take the criteria priorities into account. In particular, Pareto-efficiency 

is justified [15] in case of an algorithm that establishes the minimum between the 

element optimum and average non-distributed utility of the system. In case the system 

elements criteria have different priorities, the distribution algorithms are reduced to 

the median multicriteria choice [16]. However, in a general Pareto- inefficient case, 

mechanisms of anonymous symmetric coalitions [17] have been developed. In particu-

lar cases these mechanisms are Pareto-efficient. We shall hereinafter consider the 

problem of development of a Pareto-efficient algorithm of transferable utility distribu-

tion between elements with priorities on the basis of the results [14], obtained for 

anonymous elements. 

1 Problem definition 

Let us consider the system with the elements efficiency determined by the criteria 

vector   Kkuff k  , . Let  the scalar optimum 0

ku  for the criteria of k-element be  

determined on the basis of the condition 

 ,max0 ufArgu k
Uu

k

kk

    ,,00 Kkuff kkk   (1) 

where u  – control, U – feasible region,   Kkuf k ,  – k-element efficiency criteri-

on.  

Let us form the criteria minimums vector, required for further normalization, from the 

values obtained in case of scalar optimums of other elements: 

  .,min 0

\

min Kkuff jk
kKj

k 


  (2) 

Subject to (1), (2) the range of criteria values variation equals to     ., min0

kkkk ffuf   
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Let us introduce the hypothesis of benevolence [7], in accordance to which the ele-

ments of a strongly coupled system maximize the utility of the whole system. Control 

is determined on the basis of the maximum value of the sum of criteria in case of 

optimums of elements. In this context the unique solution of a multicriteria problem is 

formed. This solution is Pareto-efficient according to the Herneyer's theorem [1,9]. Let 

us denote this solution by *u  and define it as follows: 

    ,,,maxmax *** KkuffufArgu kk

Kj

kj
UuKk

kk








 




 (3) 

where *

kf  – k-criterion value in case of the strongly coupled system optimum. 

Let us define the strongly coupled system maximum aggregate utility  *uF  in case 

of control (3) as exceeding of criteria optimums over their minimum values: 

   .min** 



Kk

kk ffuF   (4) 

Let us introduce the system utility distribution vector   KkxX k  , , belonging to 

the acceptable set  

    .,:, *









 



 k

Kk

kkX RXuFxKkxXF   

Let us denote the criteria vector, formed as the result of aggregate utility distribution 

 kk xf , and, with account taken of (4), let us define it as follows: 

  Kkxfxf kkkk  ,min .   (5) 

Criteria functions (5) constitute the efficiency criteria of utility distribution between 

elements in case of Pareto-efficient control (3). Let us formulate the multicriteria 

problem of optimal utility distribution as follows: 

  .,max* KkxfArgX kk
FX X




   (6) 

Let us introduce the criteria priorities vector Kkk , , the components of which de-

termine their relative significance within the framework of the system aggregate utili-

ty. As hereinafter the problem (6) is formulated as minimization of criteria deviations 

from their scalar maximums, it is expedient to pass on to inverse priorities 

Kkkk  ,1  , that characterize the relevant significance of other criteria in 

comparison with this particular criteria. Let us define the vector of inverse priorities 

as follows 

  1,,  




Kk

kk KkR  .  (7) 
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As it follows from (1), (3) that deviations of criteria (5) from scalar maximums (1) are 

negative, let us define the  normalized values of criteria  kkk xf ,
~

 as squared relevant 

deviations of criteria (5) and (1) with account taken of inverse priorities: 

 
 

.,,
~

2

0min

0

Kk
ff

fxf
xf

kkk

kkkk
kkk 

















   (8) 

Firstly, normalization (8) reduces criteria to the range    1,0,
~

kkk xf   that makes it 

possible to operate on the criteria (8) as transferable ones; secondly, it prescribes the  

utility transitivity     iKkxfxf ikkikk \,,
~

,
~

   in respect of which higher prior-

ity criteria have lesser utility loss. 

Let us consider a strongly coupled system, in which control is defined according to 

(3). It also ensures utility transferability with the help of (8). It allows for [7] the re-

duction of the multicriteria problem (6) towards the scalar  optimization problem by 

means of introduction of an aggregated utility function in the form of the relative 

departures product (8): 

 



Kk

kkk
FX

xfArgX
X

,
~

min* .   (9) 

Criterion in the problem (9) constitutes an aggregated function of the system utility. 

Moreover, as it is in a normalized form (8) that partial criteria components form part 

of (9), the effect distribution that satisfies (9) provides [9] with the maximum efficient 

solution of the multicriteria problem (6) in respect of minimax 

   kkk
KkFX

xfXf
X

,
~

maxmin
~ **


 ,  

that corresponds, as it is shown in [10],  to Pareto efficiency.  

2 Utility distribution algorithm 

Let us formulate the system (4) utility distribution that is optimal in respect of criteria 

(9) in the form of the following assertion: distribution  

  Kk
fff

fuFx
kKi i

iikik

kKi

i

kKi i

k
k 
















 
 



,

1

1

\

0

*

00

\

**

\

*








 (10) 

is the solution of the problem (9). 

Proof: differentiating Lagrange function, written down for the problem (9) with con-

sideration of (8) 
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 
 

,,
~

2

0min

0































 

 Kk

k

Kk kkk

kkkk

Kk

k

Kk

kkk xF
ff

fxf
xFxfL 




  

we arrive at the system of necessary conditions of optimality 

 

 
  

 
Kk

ff

fxf

ff

fxf
L

kKi kii

kiii

kkk

kkkk
xk









 



,02
\

20min

20

20min

0
/ 







  (11) 

0/  
Kk

kxFL
.  (12) 

Eliminating Lagrange multiplier from (11), we get 

 

 
  

 
 

 
  

 
,,,,

\
20min

20

20min

0

\
20min

20

20min

0

knKnk
ff

fxf

ff

fxf

ff

fxf

ff

fxf

nKi
iii

iiii

nni

nnnn

kKi
iii

iiii

kkk

kkkk 

















 















 

whence we arrive at the system 

            ,,,,
\

200

\

200 knKnkfxffxffxffxf
nKi

iiiinnnn

kKi

iiiikkkk  


  

or 

    Kknfxffxf nnnnkkkk  ,00  (13) 

Inserting system utility (4) and utility of elements (5) into (13) we arrive at the distri-

bution (10). Differentiating (11), we shall get the system of sufficient conditions of 

optimality 

  
 

,,0
\

20min

20
// Kk

ff

fxf
L

kKi iik

iiii
xk





 

 

  

that are met in case of any   min0,, iiii ffxf . 

As distribution (10) maximizes the aggregate criterion (9), consequently, in accord-

ance with the results of [10], it is Pareto-efficient. 

On the basis of the solution (10) of the multicriteria problem (9) let us lay down the 

aggregated utility distribution algorithm in the form of the series of the following 

steps. 

1. Input of the given data: functions of criteria   Kkuff k  ,  and restrictions de-

fining the ranges of  acceptable controls Uk. 

2. Determining scalar optimums of criteria (1) and minimums of criteria (2). 

3. Determining optimums of criteria in the system (3) and utility of the system 4 (4). 
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4. Defining the priorities vector (7). 

5. Calculating the utility distribution (10) and the optimal criteria vector (5). 

The algorithm realization requires for the criteria feasible region to be not empty 

iKkUU ki \,   and also for the functions   Kkuff k  ,  to have finite 

maximums in corresponding feasible regions 
kU . These conditions are met in practi-

cal problems, because as a rule the regions 
kU , are compact and usually they coincide 

for different criteria of one system. 

3 Utility optimal distributions modelling 

Modelling was done in the context of the three-element system of electronics market, 

the elements of which are retailer, bank, insurer, with the functions   Kkuf k ,  

having the form  

  Kkucupuf kk

b

kkkk
k 


,
1 , 

where 
kkk cuf ,,  – k-element utility (profit), output and marginal costs, 

kk bp ,  –price 

trends parameters on corresponding markets. Scalar optimums of elements (1) were 

defined according to the formulas: 

 
Kk

bp

c
u

kb

kk

k
k 










 ,

1

1

0 . 

Parameters of the model, criteria (1) scalar optimums, criteria (2) minimums, criteria 

(3) system optimums are given in Table 1;  system (4) utility equaled F=6989. Calcu-

lation of parameters of the model is given [14, 18] for the electronics retailer LLC 

“Eldorado”, insurer OJSC “Insurance company “Renaissance”” and bank LLC 

“Home Credit and Finance Bank”, that were assigned indices k=1,2,3 corresponding-

ly. In the considered system element 1 gets maximum utility (utility leader), parame-

ter 0

1u  for which corresponds to the volume of sales of goods and is expressed in phys-

ical terms, and utility obtained by elements 2,3 (utility outsiders), are significantly 

lower. However, their participation is required for the system to be integral. That is 

why the system utility distribution problem becomes. Outputs 0

2u , 0

3u  correspond to 

the volume of insurance and lending and are expressed in monetary terms. 

Let us suppose that elements may assign their priorities themselves in the course of 

integration into the system, following two variants of strategic behaviour.  

Firstly, lets consider the variant of non-cooperative game [19], elements wherein don't 

form coalitions, they assign priorities simultaneously and independently. In this case 

the Cournot game model [20], symbolized by the letter «K», has the form 

    KkkKk
k




,maxarg
1




 and leads to the priorities vector 
    KkKKk

 ,* . The 
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resulting distribution 
  Kkx Kk ,*  (fig. 1) corresponds to the elements equisignifi-

cance. In this case the element 1 gets the predominant share of distributed utility, and 

the share of utility distributed in favour of the elements  2,3  is reduced  concurrently 

with the growth of the equilibrium values of priorities 
 
*

K .  Model of game with the 

institutional leader sensu Stackelberg [21], symbolized by the letter «S», takes the 

form 
      ,\,maxarg,maxarg

11

lKklSlkSk
lkk







 where l-element is the leader; 

the model results in the vector of priorities 
        lKkSSlSSk

\,, ***   . Distribu-

tion
  Kkx Sk ,*  (fig. 1) shows that the leader sensu Stackelberg (l=3) gets the ad-

vantage in spite of being the utility outsider. 

Table 1. Parameters of the model and criteria vector  

Parameter of the 

model 

Element 

1 2 3 

kb
 

-0,09 -0,19 -0,165 

kc
 

22000 0,06 0,025 

kp
 

50000 0,780 0,350 

0

ku
 

3210 240548 2962123 

0

kf  
6985,

0 

3,4 14,6 

*

kf  
6985,

0 

3,0 12,0 

min

kf  
7,0 1,2 2,4 

min*

kk ff 
 

6978,

0 

1,8 9,6 

 

Fig. 1. Utility distribution structure in case of non-cooperative behaviour  

     KKK 321  
,      1,, 1321   SSSS  
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Secondly, let us consider the variant of cooperative game [22] symbolized with the 

letter “S”. In this case elements may form coalitions. The game model of the form 

        LKkLllClkCk
lkk

\,,maxarg,maxarg
11







, where index Ll  desig-

nates the elements of coalition, leads to the vector of priorities of the form 

        lKkCkCCCl
\,, ***   . Distribution 

  Kkx Ck ,*  (fig. 2) shows that in 

comparison with non-cooperative behaviour (fig.1), the coalition of elements (1,2)  

significantly increases the utility leader's utility and increases the outsider's utility 

insubstantially. Coalition of utility outsiders (2,3) leads to a drastic utility redistribu-

tion in their favour. 

 

Fig. 2. Utility distribution structure in case of cooperative behaviour  

     2,132,122,11 CCC  
,    1,3,213,233,22   CCC  

In all the cases examined the system utility was fully distributed between the ele-

ments. This confirms Pareto efficiency of distributions that are formed on the 

basis of the developed algorithm.  Modelling showed that the developed algorithm 

allows to analyze the impact of the priorities vector on the distribution structure 

and to build the vector of the priorities that express different aims of the system 

integration.  

Conclusion 

The algorithm of solving multicriteria problems of control in strongly coupled sys-

tems has been developed.  This algorithm allows to determine the optimal system 

aggregated utility distribution  in case of inequisignificant   efficiency criteria on the 

basis of the minimum of deviations of criteria from scalar optimums. The algorithm 

application sphere includes technical and organizational systems, efficiency criteria of 

which are quantifiable and preference relations of which have been determined. In 

case the system elements utilities are transferable, which is in general ensured by the 
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criteria normalization. The algorithm is based on the normalized criteria aggregation 

and in case of the utility function optimization with account taken of priorities, it 

leads to the minimax distribution (of the guaranteed result). Consequently, the algo-

rithm determines the Pareto-efficient solution of the multicriteria problem.  

The use of algorithm allows to reduce the multicriteria problem of optimization in the 

control space to the set of scalar problems of optimal control and the problem of mul-

ticriteria distribution in the criteria space. As the result the unique solution is estab-

lished, and, moreover, solving of the multicriteria problem is significantly simplified. 
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