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Abstract. The mathematical model of the differential cascade with a symmet-

rical division of stem cells is considered in the paper. The using of the Routh-

Hurwitz’s criterion and the Andronov-Hopf theorem [1] allows to find the con-

ditions of bifurcation cycle in the model under consideration, and the phenome-

non of "soft loss of stability" was stated. 
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Introduction 

Symmetric division of stem cells is a key way to increase the number of cells in de-

velopment and regeneration of tissue after injury. However, this can lead to uncon-

trolled growth of malignant tumors. The modeling of the emergence and growth of 

malignant tumors is certainly one of the main directions of mathematical modeling in 

biology.  

In order to examine the role of symmetric cell division a mathematical model of cell 

population was considered. The paper examines various dimensions of the system that 

describes this model. The aim of this work is to find the minimum value of the num-

ber of equations in the system at which stability is lost. Analytically the conducted 

analysis has allowed to establish the loss of stability, when it is a low-dimensional 

problem, and to confirm this fact by numerical experiments. 

Model description 

Dynamic model of cell population can be represented by the following system of 

ordinary differential equations [2]: 



Mathematical Modeling                                                               Nekhozhina JuG, Sobolev VA… 

Information Technology and Nanotechnology (ITNT-2016)                                                    637 





















.100111

,112

,1,...,1,112

,1000000

nxxnxnnsxnx

nxnnxndnx

niixidixiixidix

nxxxdpxx

















 (1) 

In this system: x0 represents the number of stem cells, xi, with i = 1,…, n-1, the num-

ber of cells in the i compartment at the metastable state, and xn is the number of ma-

ture cells, xn+1 represents the amount of a cytokine which regulates the size of the 

stem cells compartment through a negative-feedback, p represents growth rate of stem 

cells, di, with i = 1,…, n,  is the number of divided cells per day, λi, with i = 1,…,n, 

represents  the speed of death of the relevant cells, s is a positive parameter. 

The problem consists in finding the minimum value of n at which the system`s stabil-

ity is lost. When n=0 the steady state with positive coordinates is asymptotically sta-

ble. So, let start with n=1. 

The study of the stability of the system when n=1 

In this case, the system has three equations. This system looks as follows:  
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Investigate the stability of this system. First, we find the steady state of the system 

from equations: 
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There are two equilibrium positions, one of which is the trivial equilibrium that is 

unstable. Therefore, let consider a non-zero equilibrium position. It looks like this: 
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To examine the stability of the steady state consider the matrix of the linearization of 

(2) at the steady state. It has the form: 
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Compose the characteristic equation of this matrix. For this let calculate the determi-

nant and equate it to zero:  
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Or 

,0
23

    (4) 

Where 

.
)0(102

2
)0(2

2
1)0(2102

,
)0(102

2
)0(212102

,
)0(102

)0(
2
1102202

dpsd

dpdpsd

dpsd

dpsd

dpsd

dpsdsd































 

The Hurwitz’s matrix for the characteristic equation is 
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According to the criterion of Routh-Hurwitz, the characteristic polynomial has roots 

with negative real part, and hence steady state of system (2) is stable, if 

∆1 = α > 0, ∆2 = αβ – γ > 0, ∆3 = γ∆2 > 0.  
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However, the characteristic equation has purely imaginary roots when .0
2
  

Indeed, if  λ1,2 = ± iω are the roots of equation (4), then, substituting in (4), we get: 
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Consider the case, when the second order minor of the Hurwitz’s matrix is equal to 

zero, and find such values of the parameter s, under which it is made. 
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Hence, at this value of the parameter s the characteristic equation (4) has purely imag-

inary roots. It is easy to verify that it will satisfy to all conditions of the Andronov-

Hopf bifurcation theorem. This means that for s > s0 there are stable solutions, at s = 

s0 the equilibrium position is the center, and if s < s0 there are an unstable solution and 

a stable limit cycle. 

Example 

Let .12,03.01,
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And the critical value .0587.00  ss  
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A non-trivial equilibrium has the form: 

(585.88235; 15623.52941; 800).  

The trajectory is presented in the following figure: 

 

Fig. 1. The trajectory for s = 0.0587. 

Now consider the case when .05.0,0  sss  

The steady state has the form: 

(705.88235; 18823.529; 800). 

The trajectory is presented in the following figure: 

 

Fig. 2. The trajectory for s = 0.05. 

In this case the steady state is unstable. Now consider the case when .1.0,0  sss  

The steady state has the form: 

(324.32432; 8648.64865; 800). 

The trajectory is presented in the following figure: 
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Fig. 3. The trajectory for s = 0.1. 

In this case the steady state is asymptotically stable. 

Conclusion 

It is shown in the paper that for n=1 the Andronov-Hopf bifurcation takes place in the 

dynamical model under consideration. The phenomenon of "soft loss of stability" was 

stated in this model, see also [3-5]. 
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