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Abstract. In this article, we investigate an elastic inverted pendulum with hys-

teretic nonlinearity (a backlash) in a suspension point. Namely, problems of 

stabilization and the optimization of such a system are considered. An algo-

rithm (based on a bionic model) which provides effective procedure for finding 

of optimal parameters is presented and applied to considered system. The re-

sults of numerical simulations, namely the phase portraits and the dynamics of 

Lyapunov function are also presented and discussed. 
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Introduction 

As known, the problem of the inverted pendulum plays a central role in the control 

theory [1-11]. In particular, the problem of inverted pendulum (as a test model) pro-

vides many challenging problems to control design. Because of their nonlinear nature 

pendulums have maintained their usefulness and they are now used to illustrate many 

of ideas emerging in the field of nonlinear control [12]. Typical examples are feed-

back stabilization, variable structure control, passivity-based control, back-stepping 

and forwarding, nonlinear observers, friction compensation, and nonlinear model 

reduction. The challenges of control made the inverted pendulum systems a classic 

tool in control laboratories. It should also be noted that the problem of stabilization of 

such a system is a classical problem of the dynamics and the control theory. Moreo-

ver, the model of inverted pendulum is widely used as a standard for testing of the 

control algorithms (for PID controller, neural networks, fuzzy control, etc.). 

According to control purposes of the inverted pendulum, the control of inverted pen-

dulum can be divided into three aspects. The first widely researched aspect is the 

swing-up control of the inverted pendulum [13-15]. The interesting and important 

results on the time optimal control of the inverted pendulum were obtained in [13, 

15]. In particular, in [15], the optimal transients (taking into account the cylindrical 
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character of the state space of the system under control) were built for different values 

of the parameters and constraints on the control torque. The second aspect is the stabi-

lization of the inverted pendulum [16, 17]. The third aspect is the tracking control of 

the inverted pendulum [18]. 

In practice, stabilization and tracking control are more useful for an application. A 

backlash in the suspension point is a kind of hysteretic nonlinearity. The hysteretic 

phenomena (especially in the form of control parameters) play an important role in 

such a fields as physics, chemistry, biology, economics, etc. It should also be pointed 

out that the hysteretic phenomena are insufficiently known in our days. The purpose 

of this paper is investigation of the possible stabilization (in a vicinity of vertical posi-

tion) of the elastic inverted pendulum in the presence of a backlash in the suspension 

point together with investigation of various aspects of such a dynamical system. 

Problem 

Let’s consider the model of stabilization of the inverted pendulum in the vicinity of 

the vertical position. The pendulum is considered as an elastic rod which is hingedly 

fixed on a cylinder. Motion of the cylinder is excited by the horizontal motion of a 

piston (see the Fig. 1). 

 

Fig. 1. Model of elastic inverted pendulum: geometry of the problem 

A mathematical model of a similar mechanical system was considered in [19]. Inves-

tigation of the dynamics of an elastic inverted pendulum was carried out in [20-23]. 

Here  yx,  is the coordinates of the elastic rod with mass m and density ρ; the Ox 

axis coincides with a tangent to rod's profile in the suspension point; θis an angle of 

slope for the coordinates of a rod, and I is a centroidal moment of inertia of the rod's 

section; 

 xX ,  is the Cartesian coordinate system connected with a considered mechanical 

system (namely the X coordinate determines the position of the piston in a cylinder), 
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M is a mass of a cylinder with length L, and F is a force joined to the piston with mass 

mp (such a force is treated as control). 

Hysteretic nonlinearity 

In the following consideration, we use the operator technique for the hysteretic non-

linearities following the ideas of Krasnosel'skii and Pokrovskii [24]. Output of the 

backlash operator on the monotonic inputs can be described by the following expres-

sion: 
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Here X0 is the initial position of the piston in a cylinder. Such an expression (action of 

such an operator) can be illustrated by the Fig. 2. 

 

Fig. 2. Dynamics of input-output relation for the backlash operator 

The detailed description of this operator as well as its properties is considered in the 

book of Krasnosel'skii and Pokrovskii [24]. 

Here X(t) is a displacement of the cylinder's center, and Y(t) is a displacement of the 

piston in the horizontal plane (see Fig. 1). 

Physical model 

Let’s assume that the deviation y  and angle θ are small, i.e., xx   and the boundary 

conditions that determine the curvature of the pendulum are: 
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The function ),( txX  describes the behavior of the pendulum's profile in the time and 

shows the deviation of the pendulum's points relative to the vertical axis;  xX ,  are 

the coordinates of the pendulum's profile, and )(),0( tstX   is a displacement of the 

suspension point in the horizontal plane. 

The coordinate system transformation in the matrix form is given by 
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Let us construct the physical model of the considered mechanical system taking into 

account a backlash in the suspension point of the elastic rod. In order to do this, we 

use the Lagrange formalism. 

Making the same transformations (Lagrange formalism, variational principle and 

Tailor’s expansion), the system of equations which describes the dynamics of the 

system under consideration has the following form: 
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Stabilization 

Let us consider the problem of control of the pendulum using the feedback principles, 

i.e., the force which affects the piston can be presented by the following equality: 

 
where a>0, k > 0 and 
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Here e1 is an average angle of the rod's deviation, and e2 is an average angular veloci-

ty of the rod. 

),( 21 eeasignkF 
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Optimization problem 

As was mentioned above, the problem’s solution on stabilization of the elastic invert-

ed pendulum in the vicinity of the upper position is consisted in search of the optimal 

values for coefficients a  and k .  

In order to solve the optimization problem in the system under consideration, we use 

the bionic adaptation algorithms because the hysteretic peculiarities in the considered 

pendulum's model lead to some difficulties in use of the classical optimization algo-

rithms due to nondifferentiability of the functions in the system of equations. 

Such algorithms are the part of the line of investigation that can be called as an "adap-

tive behavior." Main method of this line consists in the investigation of artificial or-

ganisms (in a form of a computer program or a robot) that can be named as animats 

(these animats can be adapted to the environment). The behavior of animats emulates 

the behavior of animals. 

Actual line of investigation in the frame of the animat approach is emulation of 

searching behavior of animals [25, 26]. Let us consider the bionic model of adaptive 

searching behavior on the example of caddis-flies larvae or Chaetopteryx villosa. The 

main schema of searching behavior can be characterized by the two stages: 

Motion in chosen direction (conservative tactics); 

Random change of motion direction (stochastic searching tactics). 

We consider this model for the simple case of maximum search for the function of 

two variables. Let us describe the main stages of the considered model: 

1. We consider an animat which is moved in the twodimensional space x, y. Main 

purpose of animat is maximum search for the function f (x, y). 

2. Animat is functioned in discrete time t = 0, 1, 2, … Animat estimates the change of 

current value of f (x, y) in comparison with the previous time 

     .1 tftftf
 

3. Every time animat moves so its coordinates x and y change by Δx(t) and Δy(t), re-

spectively. 
4. Animat has two tactics of behavior: 

a) conservative tactics; 
b) stochastic searching tactics. 

In that way, we can use the proposed algorithm for searching the optimal control in 

the stabilization problem of the elastic inverted pendulum. Taking into account the 

reasoning presented above, we can apply the presented algorithm to functional J(a,k) 

where the coefficients a and k determine the character of control of the mechanical. 

Due to the fact that the presented bionic algorithm is used to maximum search of the 

function of two variables, we will consider minimization of the functional as proce-

dure for finding the coefficients a and k that lead to realization of the condition 

  .max,  kaJ
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Simulation results 

Characteristics and initial conditions for the mechanical system under consideration are: 

m = 1 kg; M = 10 kg; l = 1 m; ρ = 1,04 kg/m; E = 210·109 Pa; I = 0,087 kg·m2; α= 

0.06°; L = 0,01 m; mp = 1 kg. 

In the searching process for optimization (using the bionic algorithm), we have ob-

tained the following values of coefficients: a = 8,4 and k = 1,39. 

In order to estimate the stability of the considered system, we use the Lyapunov crite-

rion. In particular, we use the following Lyapunov function: 

.2
2

2
1 eeV 

 
The phase trajectory of such a system together with the dynamics of Lyapunov func-

tion in time (namely in discrete time which corresponds to the difference scheme) are 

presented in the Fig. 3. In this figure, the integral angle e1 and integral angular veloci-

ty e2. 

 

Fig. 3. Phase trajectory (top panel) and dynamics of Lyapunov function (bottom panel) 

Conclusions 

In this paper, we have considered the stabilization problem of the elastic inverted 

pendulum under hysteretic control in the form of a backlash in the suspension point. 
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Also, the problem of the optimization for the system under consideration was ana-

lyzed. Main coefficients, namely a  and k ,  that provide the solution of the optimiza-

tion problem for the considered system were obtained using the so-called bionic algo-

rithm. 

All the results on stabilization of the system under consideration have obtained using 

the corresponding numerical methods based on the difference scheme. The results of 

numerical simulations show that the considered system eventually tends to the stable 

state both in the case of the absence of a backlash and in the case of its presence. 

These facts were presented in the form of the corresponding phase portraits for the 

considered system. Moreover, in order to estimate the stability of the elastic pendu-

lum with the hysteretic nonlinearity in the suspension point, we have used the Lya-

punov criterion and the dynamics of the corresponding Lyapunov function has also 

been presented. 
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