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Abstract. The operator of the optical beam propagation through turbulent envi-

ronment using the Fresnel approximation is being considered. The correlation 

function of random field describing inhomogeneous medium is given in the 

form of Gaussian function. The process of random field modeling using the 

Fourier transform is demonstrated. A selective correlation function is calculat-

ed, the deviation from the preset one is defined. The intensity distributions after 

propagation of optical beams in free space and in a random medium are given. 

As the input beam such optical distributions as Hermite - Gauss modes, rectan-
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1 Introduction 

Distribution of the optical signal in a free space can be subject to distortions associat-

ed with the turbulence of the medium [1, 2]. Due to the properties of turbulence ran-

dom changes in atmospheric refractive index can cause distortion of the laser radia-

tion intensity. Classical methods for describing wave propagation through the turbu-

lent atmosphere are based on the Rytov method applications [3] and the method of 

parabolic equations [4], connection between them has been demonstrated previously 

[5]. 

With the help of these methods propagation of optical signals from partially coherent 

source has been investigated [6, 7], and also features of propagation of different laser 

beams in a turbulent medium have been studied, including Gaussian beams of higher 

orders [8], hollow beams [9], diffraction-free beams, such as Gauss-Bessel and Eerie 

beams [10, 11], as well as cosine beams [12]. Wherein it was found that the higher-

order Gaussian beams, including vortex bundles [13], as well as various spatially 

structured bundles become broader under the influence of turbulence in a lesser de-
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gree than the fundamental Gaussian beam. In addition, the spread of beams with an 

inhomogeneous polarization in a turbulent medium was studied [14, 15].  

The most convenient and effective means of forming random beams with specified 

properties are the methods of diffraction optics [16-20].  

In this paper modeling of random optical beams through random medium with a given 

correlation function in the form of the Gaussian function is being considered. The 

comparative calculations of the propagation of Gaussian modes (Hermite-Gaussian 

and Laguerre-Gaussian) through the random medium are being performed. 

2 Passing through the random medium 

The distribution of a laser beam in a random medium can be described on the basis of 

the integral expressing the extended Huygens-Fresnel principle [8, 21]: 
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where 0 ( , )E x y  is a field in the input plane (at z = 0),  , , ,E u v z t  is a field at a 

distance z from the input plane, ( , , , , )x y u v z  is a random part in the propaga-

tion operator, related to atmospheric turbulence,  is the frequency of laser 

oscillation, t  is time. 
Equation (1) corresponds to the Rytov method [21], and the function ( , , , , )x y u v z  

describes accidental deviations of the phase function of a spherical wave, propagating 

from the initial to the output plane. 

Note that in this way the complex phase can be implemented also in other integral 

transforms, for example, into fractional Fourier transform [22, 23]which describes 

propagation of optical signal in parabolic fiber [24, 25]. 

Consider the one-dimensional case for simplicity. Let the correlation function of the 

random field has the shape of a Gaussian function: 
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where 0A   and 0x  . Note that this correlation function depends on the module 

of difference between the coordinates 1x  and 2x , but not on each one of them  indi-

vidually. Moreover, it does not depend on the coordinates in the output plane 1u  and 

2u , but it depends only on the distance z to it. 
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Let us assume that the average intensity of the beam passing through a turbulent at-

mosphere is maintained, and for this we`ll define the average amplitude of the random 

field equal to one: 

 exp , , 1x u z    .  (3) 

3 Generation of random field 

Without loss of generality let us consider a random field with zero mathematical ex-

pectation, ie, a field of the type: 

     , , exp , , exp , ,U x u z x u z x u z          , (4) 

since after its modeling it is easy to get the desired selection: 

     exp , , , , exp , ,x u z U x u z x u z          . (5) 

Wherein the correlation function remains unchanged: 
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Let us drop all the variables, except x , and assume that the required random field 

( )U x  can be obtained through the passage of a complex-valued white noise ( )x  

with a unit dispersion and a correlation function equal to the Dirac delta function 

( )x , through a linear filter: 

( ) ( ) ( )U x h x x  ,  (7) 

where the asterisk * denotes convolution operation, ( )h x  is a determined function 

(pulse characteristic). Then the generation problem reduces to finding ( )h x  function. 

By definition, the correlation function ( )U x  is equal to: 
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Thus, we find that the correlation function ( )UR x  can be defined as autocorrelation of 

the function ( )h x : 

( ) ( ) ( )UR x x h xh  ,  (9) 

where the   symbol denotes the operation of mutual correlation. Using the Fourier 

transformation  , we get: 

   
2

( ) ( )UR x h x  ,  (10) 

from where 

   ( ) ( )Uh x R x  .  (11) 

The last formula makes it possible to find the ( )h x  function, using the inverse Fourier 

transform. However, for calculation according to formula (7) the easiest way is to re-

use the Fourier transform to avoid fold operation: 
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Modeling of ( )U x  random field can be realized by the formula (12) using a fast Fou-

rier transform algorithm. Note that the Fourier transform from white noise will also be 

white noise. 

4 Modeling of the one-dimensional signals propagation 

In the modeling process the following parameters were used: the wavelength 

2 / 633k nm    , the input region width    ; 60 ;60a a mm mm   , 1A  , 

1.5x m  . Fresnel transformation formulas (1) and random field generations (12) 

were implemented using  fast Fourier transform. 

Input optical distribution passes consecutively 6 times through the Fresnel transfor-

mation (1) with 10z m ; thus, the field extends over 60 meters. 

Note that the passage of 60 meters using only one transformation does not change the 

overall picture, as the random field has a correlation function that depends on the 

propagation distance. 

Figures 1a, 1b are examples of generating a random field in the region 

 250 ;250mm mm . 

The view of the correlation function and of the selective correlation function is shown 

in Figure 2. 
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Fig. 1. Example of a random field: amplitude and phase 

 

Fig. 2. Sample correlation function (solid line) compared with a given (dotted line) 

As the input beam Gaussian function 1( )f x  ((Hermite-Gaussian mode of zero order), 

Hermite-Gaussian mode of the fourth order 2 ( )f x , and rectangular function 3 ( )f x : 
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where 1f mm  , 30mm  ,  4 / fH x   is the fourth Hermite polynomial. 

The results are shown in Figures 3, 4, and 5, respectively, in comparison with the 

propagation of the field in free space without irregularities. 

5 Modeling of the singular Gaussian beams propagation 

In analogy to the one-dimensional case we can consider the distribution of optical 

beams in two-dimensions variant. The difference will consist only in the fact that the 

corresponding one-dimensional transformations are replaced by the two-dimensional 

ones. 
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Fig. 3. Propagation of a Gaussian beam in free space (gray graph) and in a turbulent medium 

(black graph): the amplitude and phase 

      

Fig. 4. Propagation of  Hermite-Gauss mode in free space (gray graph) and in a turbulent medi-

um (black graph): the amplitude and phase 

      

Fig. 5. Rectangular signal propagation in free space (gray graph) and in a turbulent medium 

(black graph): the amplitude and phase 

Figure 6 shows an example of generating a random two-dimensional field with corre-

lation function in the form of Gaussian function. Figure 7 shows an image of a sample 

correlation function. 
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Fig. 6. Generation of a random two-dimensional field: amplitude and phase 

 

Fig. 7. Sample correlation function of the two-dimensional field 

Hermite-Gauss mode is selected as an example of the optical beam propagation 

through random field [26-28]. The result is shown in Figure 8. 

      

Fig. 8. Hermite-Gauss mode after passing through the random field: amplitude and phase 

In addition to the extended Huygens-Fresnel principle (1), there is a different ap-

proach for modeling random medium, based on the scheme with screens with a ran-

dom phase [29, 30]. 
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Table 1 shows the results of comparative modeling of propagation of the fundamental 

Gaussian beam and of vortex Laguerre-Gaussian laser beams [26, 31, 32] in a random 

medium. A lot of thin phase screens with a random distribution, separated by a free 

space, were used for modeling. Thus, the beam periodically acquires random phase 

changes in the thin screen, passes part of the way in free space. During the modeling 

the screens with uniform random phase noise in the range of [0, ] were located every 

1.5 km of the passage way of 15 km. 

As follows from the given results of the modeling, at a distance of 15 km the sizes of 

the Gaussian and of the vortex beams become virtually identical, although originally 

the Gaussian beam was more compact. Note that the vortex phase structure of the 

Laguerre-Gaussian beam remains sufficiently expressed despite the significant noise 

and the distance covered. 

The stability of the vortex beam to turbulent impact was noted in the work [13], 

where it was stated that the vortex beam can "split, deviate, wander" outside the area 

of the detector, but will never disappear. In this work it was shown that a vortex beam 

of the fifth order is stored in the turbulent medium for over 2 kilometers, and is then 

splits into first order vortices that are lasting longer than 10 kilometers. 

6 Conclusion 

The operator, based on extended Huygens-Fresnel principle, of optical beam propaga-

tion through turbulence media was considered. The generation of a random field de-

scribing the inhomogeneous media with a given correlation function is implemented 

by linear filtering of white noise in the spectral domain. Deviation between the calcu-

lated correlation function and the given correlation function showed good perfor-

mance of this algorithm. The computations of intensity distributions of Gaussian 

beams of high order were performed in the free space and random media. 

Less broadening of the vortex beam in comparison with fundamental beam was 

shown based on comparative modeling of fundamental Gaussian beam and vortex 

laser beam propagation in random media.  
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Table 1. Results of modeling of laser beam propagation with periodical phase noising of com-

plex beam distribution 

Intensity 

and phase 

distributions 

at a distance 

z 

Gaussian beam Vortex Laguerre-Gaussian 

beam 

z = 0 

  

  
z = 3 km 

  
  

z = 6 km 

  
  

z = 9 km 

  
  

z = 12 km 

    
z = 15 km 
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