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Introduction  

The usual assumption of the singular perturbation theory [1-3] is based on the fact, 

that the main functional determinant of the fast subsystem is different from zero. 

However, in many applications this condition is violated that implies the critical phe-

nomena. A violation of this condition can lead to a delaying effect of loss of stability 

[4]. Phenomenon of the delay of the loss of stability is based on the fact that the actual 

escape of the phase point from the position of equilibrium, which lost its stability, 

does not occur immediately. Two scenarios for delaying of the loss of stability are 

well-known [5].  

The first case corresponds to the transition of one real eigenvalue of the linearized fast 

subsystem through zero when the slow variables are changed. This scenario for delay-

ing of the loss of stability in the singularly perturbed systems is associated with the 

canards or duck-trajectories [6-16]. In the second case a pair of complex conjugate 

eigenvalues passes from the left complex half-plane to the right one [17-19].  

In this paper we also consider a scenario of change of stability when the real parts as 

well as the imaginary parts of a pair of complex conjugate eigenvalues become zero 

followed by the appearance of multiple zero root and then by the birth of a pair of real 

eigenvalues of opposite signs. 

All three scenarios of change of stability are discussed via the Hindmarsh-Rose model 

of nerve conduction [20]. 
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Delay phenomenon of loss of stability in multirate systems 

Consider the system of ordinary differential equations with a small positive parame-

ter: 

( , , ), ( , , ),x X x y y Y x y              (1) 

where x and y are vectors in Euclidean spaces Rm  and Rn , respectively, ε is a small 

positive parameter, the vector-functions X and Y are sufficiently smooth and their 

values are O(1) as 𝜀 →  0. The slow and fast subsystems are represented by the first 

and the second equation of (1), respectively. Such systems are called the singularly 

perturbed systems [1-3]. 

A smooth surface S in R R Rm n  is called an integral manifold of the system (1) if 

any integral curve of the system that has at least one point in common with S lies 

entirely on S. Only the integral manifolds of system (1) with dimension m (the dimen-

sion of the slow variable x) that can be represented as graphs of functions  

( , ),y h x   

are discussed here.
 

We will assume that ( , )h x  is a sufficiently smooth function of  . Such integral 

manifolds are called the manifolds of slow motions. 

The surface described by the degenerate equation  

( , ,0) 0Y x y                (2)
 

is called a slow surface (or a slow curve when the dimension of this surface is equal to 

one). The slow surface can be considered as a zero-order ( 0) 
 
approximation of 

the slow integral manifold, i.e., ( ,0) ( ),h x x
 
where ( )x  is an isolated root of the 

degenerate equation (2). 

The subset of the slow surface is stable (or attractive) if the spectrum of the Jacobian 

matrix 

 , ( ),0
Y

J x x
y







          (3) 

is located in the left half-plane. If there is at least one eigenvalue of the Jacobian ma-

trix (3) with a positive real part then the subset of the slow surface is unstable (or 

repulsive). The subset of the slow surface given by 

 det , ( ),0 0
Y

x x
y







 

determines a breakdown surface (or jump points in the scalar case) [1, 2]. 

In an "–neighborhood of a stable (unstable) subset of the slow surface there exists a 

stable (unstable) slow integral manifold. 

A slow integral manifold can change its stability in some specific cases. The mecha-

nism of two cases of change of stability is described below. 
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The case of a zero root. Canards  

Consider the autonomous singularly perturbed system 

( , , , ), ( , , , ),x X x y y Y x y                (4) 

where   is small positive parameter,   is an additional parameter, for which an 

equilibrium of the fast equation becomes unstable with transition of one real eigen-

value of (3) through zero when the slow variables are changed.  

For simplicity we consider the case when the variables x and y are scalar. The stable 

and unstable subsets of the slow curve are separated by the jump point(s). 

The presence of the additional scalar parameter 𝛼 provides the possibility of gluing 

the stable and unstable slow invariant manifolds at a jump point to form a single tra-

jectory, the canard.  

A canard is a trajectory of a singularly perturbed system of differential equations if it 

follows at first a stable invariant manifold, and then an unstable one. In both cases the 

length of the trajectory is more than infinitesimally small. 

The term “canard” (or duck–trajectory) had been originally given by French mathe-

maticians to the intermediate periodic trajectories of the van der Pol equation between 

the small and the large orbits due to their special shapes [6]. However, in our work a 

canard is a one-dimensional slow invariant manifold of variable stability [1, 2]. 

As the simplest system with a canard we propose 

1, .x y xy     

It is clear that the trajectory 0y   is a canard. The left part (x < 0) is stable and the 

right part (x > 0) is unstable. These two parts are divided by a jump point, which sep-

arates stable and unstable parts of the slow curve, at 0x  . 

The case of a pair of purely imaginary roots 

Consider the slow-fast system 

( , , ), ( , , ),x X x y y Y x y              (5) 

for which a singular point of the equation of fast motions becomes unstable with tran-

sition of a pairs of eigenvalues through the imaginary axis when the slow variables 

are changed [4, 17-19]. It should be noted that the system (5) can be obtained from (1) 

by time scaling transformation. 

For analytical systems the positive semi-trajectories in a certain region of phase space 

tend to the curves of the degenerate system having a comparable length of motions 

near the stable and unstable parts of the slow surface. This describes the trajectories 

similar to canards, which are described above. 

Slow surface of the system (5) is divided into stable and unstable regions. The first 

one consists of a stable equilibrium of the fast subsystem and the other one consists of 

the unstable steady states, their common border is called as the breakdown surface. 

There is an open set of points on the stable part of the slow surface starting from 
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which the phase curves of the slow system intersect the breakdown surface and, under 

changing of x along the slow curve, the pair of eigenvalues of a singular point of the 

equation of fast motions passes through the imaginary axis with a non-zero rate. The 

phase point of the system (5) starting close to the stable part of the slow surface fast 

(during the time of O(|ln ε|) as ε → 0) tends to the ε-neighborhood of the slow surface 

and then moves along the slow trajectory. If the system (4) is analytic, then the further 

movement has an interesting and unusual phenomenon - the delay. It consists in the 

fact that the phase point continues to move along the unstable part of the slow surface 

in the ε-neighborhood of the slow path, more time on the order O(ε
−1

) after crossing 

by the slow path of the stability border. And this slow path of the trajectory along the 

unstable part of the slow surface has a distance of order O(1). Only then can happen 

jump, i.e., for a time of order O(|ln ε|) (slow variables are changed by a small amount 

of the order O(ε|ln ε|) as ε → 0), avoiding the slow surface at a distance of the order of 

O(1). 

This situation observed is similar to the situation with canard. The canard also moves 

at first along the stable part of the slow surface, and then moves along the unstable 

part. But canards are found in two-dimensional system with an additional parameter 

and they are quite rare: they exist for an exponentially small range of parameter val-

ues. And canards are the result of the transition of one real eigenvalue from the left 

half-plane to the right one.  

The change of stability on the Hindmarsh-Rose 

The Hindmarsh-Rose model [20] describes the basic properties of individual neurons, 

the generation of spikes and a constant level potential. In this model, Kirchhoff's law 

is written for each ionic currents flowing through the cell membrane. 

The dimensionless form of the Hindmarsh-Rose model is 

3 2 ,

2 ,

( ) ,

x y ax bx z I

y c dx y

z s x z







     



  
   


          (6) 

where х is a transmembrane neuron potential, y and z are the characteristics of ionic 

currents dynamic, I is ambient current, other parameters reflect the physical features 

of the neurons. The typical values of the positive parameter  are small ( 1)  [21]. 

It should be noted that the system (6) has the type of (4) with scalar slow variable and 

two-dimensional fast variable. 

Slow curve of system (7) is described by: 

3 2

2

0,

0.

y ax bx z I

c dx y

     


  
            (7) 

The plot of the slow curve is presented on Fig. 1. 
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Fig. 1. The slow curve (7) of the system (6); a=1, b=3, c=1, d=5, I=2.7 

From (7) we get 

3 2( ) 0,ax d b x z I c       

which allow us to investigate a projection of the slow curve on the XOZ-plane, see 

Fig.2.  

 

Fig. 2. The projection of the slow curve on the XOZ-plane. The parameters’ values are the 

same as for Fig. 1 

The Jacobian matrix (3) for the system (6)  

23 2 1

2 1

ax bx
J

dx

  
  

  
 

has a characteristic equation  

2 2 2(1 3 2 ) 3 2( ) 0.ax bx ax d b x                   (8) 

The necessary condition of stability (which is also the sufficient in this case) for the 

polynomial (8) is 
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 

21 3 2 0,

3 2 2 0.

ax bx

ax d b x

   


  

          (9) 

From (9) we can determine the abscissas of the points of an expected change of stabil-

ity of the slow curve: 

2

1 2 3,4

2( ) 3
, 0, .

3 3

b d b b a
x x x

a a

  
    

These points divide the slow curve into several parts, see Fig. 3.  

  

Fig. 3. The projection of the slow curve on the XOZ-plane and the points of changing of 

stability 

We check the sign of real part of eigenvalues of the matrix J for all parts to find out 

whether the region is stable or unstable. One of the two real eigenvalues of the Jaco-

bian matrix of the fast system changes its sign at the points 1A  and 2A , and at these 

points the slow curve changes its stability. Thus, 1A  and 2A  are the jump points. The 

proper choice of an additional parameter of the system allows us to glue the stable and 

the unstable integral manifolds of the system that exist in the ε-neighborhood of the 

stable and unstable regions of the slow curve. As a result of this gluing we obtain a 

canard.  

However, there are other points of the stability’s change (see 1B  and 2B  on Fig. 3), 

which are not jump points, because the trajectory does not immediately escape the 

slow integral manifold as soon as it reaches these points, compared to the previous 

case. One can find them by equating the real parts of the complex conjugate eigenval-

ues of J  
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2 2 2 2(1 3 2 ) (1 3 2 ) 4(3 2 2 )

2

ax bx ax bx ax dx bx


        
       (10) 

to zero. The phenomenon of the delay of loss of stability occurs as the trajectory goes 

through these points. 

There are points 1C  (between points 2A  and 1B ) and 2C  (to the right from the point 

2B ) on the slow curve, at which the pair of real eigenvalues of the Jacobian matrix J 

becomes the pair of the complex conjugate eigenvalues, see Fig. 3. 

From (10) it is possible to find the relations between parameters values 

 2

3
,

2 3

a
d

b b a


 
        (11) 

under which the points 2 ,A  1B  and 1C  coincide. In that case the real and the imagi-

nary parts of the pair of complex conjugate eigenvalues become equal to zero simul-

taneously, and a multiple zero root arises with the following emergence of the pair of 

real eigenvalues with the opposite sign.  
Under condition (11) and the proper choice of the values of the parameters it is possi-

ble to construct the slow integral manifold with multiple change of stability: we need 

one parameter, say s, to glue the stable and unstable slow integral manifolds at the 

point 1A  using the techniques of canards (see Figs. 4 and 5), and we need two more 

parameters, say a and I, for gluing integral manifolds at the point 2A  with help the 

method described in [22, 23].  

 

Fig. 4. The projections of the canard without head (blue line) and the slow curve (red line) 

of the system (6) under the condition (11) and a=1, b=3, c=1, α=-1.2, I= 2.7, ε= 0.01, 

s=3.0810445478558141214 
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Fig. 5. The projections of the canard with head (blue line) and the slow curve (red line) of 

the system (6) under the condition (11) and a=1, b=3, c=1, α=-1.2, I= 2.7, ε= 0.01, 

s=3.0810445478558141213 

As result of these gluing procedures we get the slow integral manifold with multiple 

change of stability (see Fig. 6) that looks like a canard cascade [24]. The difference 

between these two objects consists in that for a canard cascade we apply the canard 

technique only. 

 

Fig. 6. The projections of the integral manifold with multiple change of stability (blue line) 

and the slow curve (red line) of the system (6)  

Conclusion  

In this paper we investigated the different scenarios of the changing of stability of 

slow integral manifold via the Hindmarsh-Rose model. We have shown that in this 

singularly perturbed system the equilibrium of the fast subsystem loses its stability 

with the passage of one or a pair of complex conjugate eigenvalues through the imag-

inary axis when the slow variables are changed.  



Mathematical Modelling                                      Shchepakina EA. Three scenarios… 

Information Technology and Nanotechnology (ITNT-2016)                                                    672 

Moreover, it was shown that there is the scenario of change of stability when the real 

parts as well as the imaginary parts of a pair of complex conjugate eigenvalues be-

come zero followed by the appearance of multiple zero root and then by the birth of a 

pair of real eigenvalues of opposite signs. The crucial result of present investigation is 

that it is possible to construct the slow integral manifold with multiple change of its 

stability for some values of the additional parameters of the singularly perturbed sys-

tem. 
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