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Abstract. The paper reports an analytical model of a 4-DOF gyro-

accelerometer consisting of 2-DOF drive and 2-DOF sense oscillators config-

ured orthogonally. A detection scheme for time varying angular rate and linear 

acceleration, by combining the structural-model of gyro-accelerometer with the 

processes of synchronous demodulation and filtration, which leads to the in-

phase and quadrature components of the system’s output signal. These two 

components can be utilized in the detection of angular motion and linear accel-

eration. The in-phase signal can be used for angular rate detection and the quad-

rature signal can be utilized for linear acceleration. Finally, the results of the 

model have been validated by comparing with MATLAB®/Simulink data which 

shows excellent matching with each other. 
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1 Introduction 

It is a well-known fact that all vibratory gyroscopes operate on the basis of transfer of 

energy from one mode to the other. The device may have either single DOF [1] or 

multi-DOF oscillators [2-5] which act as two orthogonally configured subsystems, a 

self-tuned oscillator forming the drive mode and a micro-g accelerometer, forming the 

sense mode. In the event of an angular rate, the transfer of energy from one mode to 

the other is detected and processed using suitable circuitry to produce the desired 

output. It is quite obvious that all vibratory gyroscopes can also sense linear accelera-

tion in addition to angular rate sensing at their events of occurrence. Considering the 

strategy of simultaneous detection of linear acceleration and angular rate at their 

events, a controller circuit has been reported for a 2-DOF conventional gyroscope [6].  
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Some multi-DOF systems have also been proposed and realized which can sense line-

ar acceleration along with angular rate [7, 8], while offering other advantages such as 

increased robustness and immunity to fabrication imperfections.  

For the development of superior performance inertial sensors, the characteristics of 

the device have to be thoroughly understood and the design optimized which can 

achieved by taking proper care in the design and modeling stages. Hence mathemati-

cal modeling plays a key role in device design as well for optical elements [9-13]. 

Various mathematical models have been reported separately for accelerometer and 

gyroscope devices. Some of the mathematical models for gyroscopes have reported 

acceleration effect as an error, however confirming its presence. Recently, mathemat-

ical models of multi-DOF structures for simultaneous detection of acceleration effect 

and angular rate have also been reported, few of them are, 2-DOF gyro-accelerometer 

[14], a 2-DOF drive and 1-DOF sense gyro-accelerometer [7, 15, 16] and a 1-DOF 

drive and 2-DOF sense gyro-accelerometer [8]. 

 
Fig. 1. Schematic illustration of mass-spring-damper for a 4-DOF gyro-accelerometer 

2 4-DOF Model 

The 4-DOF gyro-accelerometer system exploits the dynamic amplification in the 
decoupled 2-DOF drive and sense oscillators so as to attain large amplitude of oscilla-
tion without resonance [17]. As shown in Fig. 1, this system is composed of three 
proof masses that are interconnected by flexures springs. The mass 𝑚1 is designed 
such that it is constrained in the sense direction whilst it is excited in the drive direc-
tion alone. The configuration of the masses 𝑚2 and 𝑚3 within the decoupling frame 
mass, 𝑚𝑓 is such that these two masses are mechanically decoupled from the drive 

oscillations. Therefore, the first mass 𝑚1 and the combination of mass 𝑚2, mass 𝑚3 
and the decoupling frame mass 𝑚𝑓 i.e. (𝑚2 + 𝑚3 + 𝑚𝑓) form the 2-DOF oscillator in 

the drive direction. The masses 𝑚2 and 𝑚3 oscillate independantly in the sense direc-
tion thus forming the 2-DOF sense direction oscillator. The larger mass 𝑚2 represents 
the primary mass, which generates the Coriolis force that excites the sense oscillator. 
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The smaller mass 𝑚3 is a secondary mass and is designed to serve as a dynamic vi-
bration absorber of mass 𝑚2 in the sense direction. In the event of an angular motion, 
the sense masses 𝑚2 and 𝑚3 are influenced by Coriolis force and begin to oscillate in 
the sense direction. Each of both 2-DOF drive and sense oscillators has two resonance 
peaks and flat zone in between peaks. The most important requirement of the overall 
4-DOF gyro-accelerometer system is that the flat amplitude regions of both the 2-
DOF oscillators must overlap precisely and the operating frequencies of the system 
must be located in their flat amplitude zones, thereby leading to the maximum robust-
ness of the performance against the fluctuations of system parameters. The equations 
of motion can be represented by Newton’s second law of motion, [2, 17]: 

𝑚1�̈�1 + 𝑐1𝑥�̇�1 + (𝑘1𝑥 + 𝑘2𝑥)𝑥1 = 𝑘2𝑥𝑥2 + 𝐹𝑑(𝑡) ,                   (1) 

𝑀𝑝�̈�2 + 𝑐2𝑥�̇�2 + 𝑘2𝑥𝑥2 = 𝑘2𝑥𝑥1,                                              (2) 

 𝑚2�̈�2 + 𝑐2𝑦�̇�2 + (𝑘2𝑦 + 𝑘3𝑦)𝑦2 = 𝑘3𝑦𝑦3 − 2𝑚2Ω𝑧�̇�2 

−𝑚2Ω̇𝑧𝑥2 + 𝑚2(𝑎𝑥 sin 𝜃 − 𝑎𝑦 cos 𝜃),                 (3) 

𝑚3�̈�3 + 𝑐3𝑦�̇�3 + 𝑘3𝑦𝑦3 = 𝑘3𝑦𝑦2 − 2𝑚3Ω𝑧�̇�2 

−𝑚3Ω̇𝑧𝑥2 + 𝑚3(𝑎𝑥 sin 𝜃 − 𝑎𝑦 cos 𝜃),                  (4) 

respectively where, 𝐹𝑑(𝑡) = 𝐹𝑜 sin 𝜔𝑑𝑡 is the sinusoidal driving force that excites the 

driven mass 𝑚1 at the drive frequency 𝜔𝑑, Ω𝑧 = Ω𝑜 cos(𝛼𝑡), where Ω𝑜 is the ampli-

tude of angular velocity, 𝛼 is the frequency of angular rate. 𝑐1𝑥, 𝑐2𝑥, 𝑐2𝑦 and 𝑐3𝑦 are 

the damping coefficients corresponding to the respective stiffness co-efficients 𝑘1𝑥, 

𝑘2𝑥, 𝑘2𝑦 and 𝑘3𝑦 as shown in Fig. 1. The term Ω̇𝑜𝑥2 is the Euler’s acceleration. The 

notations  𝑎𝑥 and 𝑎𝑦 are external accelerations along their respective axes and these 

have been included for the analysis of gyro-accelerometer system. The terms 

2𝑚2Ω𝑜�̇�2 and 2𝑚3Ω𝑜�̇�2 are the Coriolis forces that excite the respective masses, 𝑚2 

and 𝑚3 in sense direction. The corresponding displacements of the masses, 𝑚2 and 

𝑚3, are also affected by external linear acceleration.   

3 Detection Scheme 

The scheme for the discrimination of the angular rate and acceleration is presented 

below. This scheme for angular rate amplitude, Ω𝑜 , and associated frequency, 𝛼 , 

along with linear acceleration is applicable in case where angular rate is time depend-

ent. The absolute transformation of (4) yields the solution that comprises both tempo-

rally damped and un-damped terms. The temporal decay terms, however, are not triv-

ial as these are vital for deciding the turn-on time and settling time of the system. 

Since the output signal is processed after the device output is settled down, the contri-

butions of decay terms become insignificant. Therefore the settled solution, of (4), is 

written as:  

�̅�3(𝑡) = 𝐴1 cos{(𝜔 + 𝛼)𝑡 + 𝜙𝑐𝑥(𝜔) + 𝜙2𝑦(𝜔 + 𝛼) + 𝜙𝑐𝑦(𝜔 + 𝛼)} 

+𝐴2 cos{(𝜔 − 𝛼)𝑡 + 𝜙𝑐𝑥(𝜔) + 𝜙2𝑦(𝜔 − 𝛼) + 𝜙𝑐𝑦(𝜔 − 𝛼)}         

+ℛ𝑒𝑥𝒜2𝑦(𝜔)𝒜𝑐𝑦(𝜔) sin (𝜔𝑡 + 𝜙2𝑦(𝜔) + 𝜙𝑐𝑦(𝜔)) ,                  (5) 

where ℛ𝑒𝑥, external acceleration and, 
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𝐴1,2 = −Ωo𝑓𝑜𝜔2𝑥
2 𝒜𝑐𝑥(𝜔) (𝜔 ±

1

2
𝛼) 𝒜2𝑦(𝜔 ± 𝛼)𝒜𝑐𝑦(𝜔 ± 𝛼), 

𝒜𝑐𝑥
−2(𝜔) = [(𝜔1𝑥

2 − 𝜔2)(𝜔2𝑥
2 − 𝜔2) − 𝜇𝑥

2𝜔2𝑥
4 − 4𝜆1𝑥𝜆2𝑥𝜔2]2 

+4[𝜆1𝑥(𝜔2𝑥
2 − 𝜔2)𝜔 + 𝜆2𝑥(𝜔1𝑥

2 − 𝜔2)𝜔]2, 

𝜙𝑐𝑥(𝜔) = − tan−1
2𝜔{𝜆1𝑥(𝜔2𝑥

2 − 𝜔2) + 𝜆2𝑥(𝜔1𝑥
2 − 𝜔2)}

(𝜔1𝑥
2 − 𝜔2)(𝜔2𝑥

2 − 𝜔2) − 𝜇𝑥
2𝜔2𝑥

4 − 4𝜆1𝑥𝜆2𝑥𝜔2
, 

𝒜𝑐𝑦
−2(𝜔) = [(𝜔2𝑦

2 − 𝜔2)(𝜔3𝑦
2 − 𝜔2) − 𝜇𝑦

2𝜔3𝑦
4 − 4𝜆2𝑦𝜆3𝑦𝜔2]

2
 

+4[𝜆2𝑦(𝜔3𝑦
2 − 𝜔2)𝜔 + 𝜆3𝑦(𝜔2𝑦

2 − 𝜔2)𝜔]
2

, 

𝜙𝑐𝑦(𝜔) = − tan−1
2𝜔{𝜆2𝑦(𝜔3𝑦

2 − 𝜔2) + 𝜆3𝑦(𝜔2𝑦
2 − 𝜔2)}

(𝜔2𝑦
2 − 𝜔2)(𝜔3𝑦

2 − 𝜔2) − 𝜇𝑦
2𝜔3𝑦

4 − 4𝜆2𝑦𝜆3𝑦𝜔2
, 

𝒜2𝑦
2 (𝜔) = [(𝜔2𝑦

2 + 𝜔3𝑦
2 − 𝜔2)

2
+ 4𝜆2𝑦

2 𝜔2], 

𝜙2𝑦(𝜔) = tan−1
2𝜆2𝑦𝜔

𝜔2𝑦
2 + 𝜔3𝑦

2 − 𝜔2
 , 

𝜔1𝑥
2 = (𝑘1𝑥 + 𝑘2𝑥)/𝑚1;  𝜔2𝑥

2 = 𝑘2𝑥/𝑀𝑝, 

𝜔2𝑦
2 = (𝑘2𝑦 + 𝑘3𝑦)/𝑚2;  𝜔3𝑦

2 = 𝑘3𝑦/𝑚3, 

𝜇𝑥
2𝜔2𝑥

2 = 𝑘2𝑥/𝑚1;  𝜇𝑦
2𝜔3𝑦

2 = 𝑘3𝑦/𝑚2;  𝜇𝑥
2 = 𝑀𝑝/𝑚1, 

𝜇𝑦
2 = 𝑚3/𝑚2;  𝑓𝑜 =  𝐹𝑜/𝑚1; 𝜆1𝑥 = 𝑐1𝑥/2𝑚1, 

 𝜆2𝑥 = 𝑐2𝑥/2𝑀𝑝;  𝜆2𝑦 = 𝑐2𝑦/2𝑚2;  𝜆3𝑦 = 𝑐3𝑦/2𝑚3. 

As is evident from (5), the output signal is modulated by a sinusoidal function. The 

synchronous demodulation of this signal yields the in-phase and quadrature compo-

nents defined as �̅�𝑝 = �̅�3(𝑡)cos (𝜔𝑡) and �̅�𝑞 = �̅�3(𝑡)sin(𝜔𝑡) respectively. In order to 

arrive at the low-pass-filtered solution after demodulation, we primarily deal with the 

in-phase component, �̅�𝑝. The quadrature component, �̅�𝑞, can be tackled accordingly. 

With the aid of trigonometric identities and settled solution (5), the in-phase compo-

nent �̅�𝑝 is rearranged as,  

�̅�𝑝 = 𝐴{cos(2𝜔𝑡 + 𝜙𝑐𝑥(𝜔) + 𝜙) + cos(𝜙𝑐𝑥(𝜔) + 𝜙)} cos(𝛼𝑡 + 𝛥𝜙) 

−𝛿𝐴{sin(2𝜔𝑡 + 𝜙𝑐𝑥(𝜔) + 𝜙) + sin(𝜙𝑐𝑥(𝜔) + 𝜙)} sin(𝛼𝑡 + 𝛥𝜙) 

+
1

2
ℛ𝑒𝑥𝒜2𝑦(𝜔)𝒜𝑐𝑦(𝜔) {sin (𝜙2𝑦(𝜔) + 𝜙𝑐𝑦(𝜔)) 

+ sin (2𝜔𝑡 + 𝜙2𝑦(𝜔) + 𝜙𝑐𝑦(𝜔))}.                 (6) 

The modified parameters included in (6), as per [6, 7], are defined as,  

�̅� =
1

2
(𝐴1 + 𝐴2);   𝛿𝐴 =

1

2
(𝐴1 − 𝐴2), 

�̅� =
1

2
[𝜙2𝑦(𝜔 + 𝛼) + 𝜙2𝑦(𝜔 − 𝛼) + 𝜙𝑐𝑦(𝜔 + 𝛼) + 𝜙𝑐𝑦(𝜔 − 𝛼)], 

Δ𝜙 =
1

2
[𝜙2𝑦(𝜔 + 𝛼) − 𝜙2𝑦(𝜔 − 𝛼) + 𝜙𝑐𝑦(𝜔 + 𝛼) − 𝜙𝑐𝑦(𝜔 − 𝛼)]. 

Further, the output signals terms cos(𝛼𝑡 + 𝛥𝜙) and sin(𝛼𝑡 + 𝛥𝜙) in (6) led by phase 

shift, 𝛥𝜙, are  related to the angular rate. The phase shift, 𝛥𝜙, in these function is 
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distorted by frequency, 𝛼. Hence, it is essential to employ low-pass-filtering in order 

to eliminate the terms having doubled frequency. Thus, the filtered solution after trig-

onometric manipulation is given by, 

�̅�𝑙𝑝 = 𝐴𝑝 cos(𝛼𝑡 + 𝜓𝑝) +
1

2
ℛ𝑒𝑥𝒜2𝑦(𝜔)𝒜𝑐𝑦(𝜔) sin (𝜙2𝑦(𝜔) + 𝜙𝑐𝑦(𝜔)),          (7) 

where 

𝐴𝑝
2 = 𝐴

2
cos2 (𝜙 + 𝜙𝑐𝑥(𝜔)) + 𝛿𝐴2sin2 (𝜙 + 𝜙𝑐𝑥(𝜔)),            (7a) 

𝜓𝑝 = 𝛥𝜙 + 𝛥𝜑𝑝,                                                                         (7b)                                                             

𝛥𝜑𝑝 = tan−1 [
𝛿𝐴

𝐴
tan (𝜙 + 𝜙𝑐𝑥(𝜔))]. 

Similarly, the low-pass-filtered quadrature component after demodulation is written 

as, 

�̅�𝑙𝑞 = 𝐴𝑞 cos(𝛼𝑡 + 𝜓𝑞) +
1

2
ℛ𝑒𝑥𝒜2𝑦(𝜔)𝒜𝑐𝑦(𝜔) cos (𝜙2𝑦(𝜔) + 𝜙𝑐𝑦(𝜔)),        (8) 

where 

𝐴𝑞
2 = 𝐴

2
sin2 (𝜙 + 𝜙𝑐𝑥(𝜔)) + 𝛿𝐴2cos2 (𝜙 + 𝜙𝑐𝑥(𝜔)),            (8a) 

𝜓𝑞 = 𝛥𝜙 + 𝛥𝜑𝑞 ,                                                                         (8b) 

𝛥𝜑𝑞 = −tan−1 [
𝛿𝐴

𝐴
cot (𝜙 + 𝜙𝑐𝑥(𝜔))]. 

It is worth mentioning here that the first terms pertaining to gyro action of the of re-

spective in-phase and quadrature signals (7) and (8) are distorted both in amplitudes, 

𝐴𝑝 and 𝐴𝑞, and in corresponding phases, 𝜓𝑝 and 𝜓𝑞, by 𝛼. At the same time, the line-

ar acceleration terms in these signals are unaffected by 𝛼. From equations (7) and (8) 

it is also inferred that at the optimum operating condition of the present device, the 

system must be driven at zero-phase frequency, as already emphasized [17], of the 2-

DOF drive oscillator and the corresponding structural frequencies, 𝜔1𝑥 and 𝜔2𝑥 must 

be equal and these must match with driving frequency that results into 𝜙𝑐𝑥(𝜔) = 0. 

Likewise, the anti-resonance frequency of passive mass (𝑚2) amplitude must also 

match with drive frequency and sense mass related structural frequencies, 𝜔2𝑦 and 

𝜔3𝑦√(1 + 𝜇2), must be equal [17]. That leads to the phase, 𝜙2𝑦(𝜔) + 𝜙𝑐𝑦(𝜔) = 0. 

As a consequence of this the acceleration term in in-phase signal (7) vanishes and 

only the gyro action related term exists. On the other hand in quadrature signal (8), 

the acceleration term exist and gyro related term is almost insignificant. Therefore, 

the in-phase signal (7) can be used for angular rate detection and the quadrature one 

(8) can be utilized for linear acceleration extraction under such optimized operating 

condition of the gyro-accelerometer system.  

4 Results and discussion 

Considering the design equations, the spring constants and structural frequencies by 

adjusting mass values, 𝑚1, 𝑚2, 𝑚3, frame mass, 𝑚𝑓 and subsequently mass ratios, 𝜇𝑥
2 

and 𝜇𝑦
2, have been decided optimally. The values of these and other parameters are 

listed in Table 1. The following figures have been calculated by using these values 

unless it is specified. 
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Table 1. Parameter values used for calculations 

Parameters Values 

Active mass (m1) 

Passive mass (m2) 

Sense mass (m3) 

Frame mass (mf) 

Spring constant (k1x; k2x) 

Spring constant (k2y; k3y) 

Frequencies (ω1x = ω2x = ω2y) 

Frequency (ω3y) 

Fo; Angular rate (Ωo) 

201.9 x 10-9 kg 

57.24 x 10-9 kg 

5.6  x 10-9 kg 

10.5 x 10-9 kg 

153.5 N/m; 87.59 N/m 

62.26 N/m; 6.1 N/m 

5.5 kHz 

5.25 kHz 

2.171x10-5 N; 200 rad 

Figure 2a-d  are Bode plots of  the demodulated and low-pass-filtered in-phase and 

quadrature components of amplitudes and corresponding emerged phases of Coriolis 

and Euler’s signal of gyro-accelerometer for different values of driving frequency. 

Figure 2a illustrates the results of respective in-phase and quadrature components, 𝐴𝑝 

and 𝐴𝑞, calculated with the help of (7a) and (8a) respectively for driving frequencies, 

𝜔 = 𝜔𝑑 = 𝜔1𝑥  and 𝜔𝑑 = 1.005 𝜔1𝑥 . From this figure it is observed that a slight 

deviation of driving frequency, 𝜔𝑑 , from 𝜔1𝑥  within the range of drive and sense 

bandwidth does not have the considerable effect  on the components 𝐴𝑝 and 𝐴𝑞. For 

both values of drive frequency, 𝜔𝑑, the in-phase amplitude 𝐴𝑝 is the major component 

and increases with 𝛼 in both the cases. At the same time the quadrature component, 

𝐴𝑞, is nearly zero for initial values of 𝛼, and increases thereafter with 𝛼.  

The results shown in Fig. 2b correspond to phase components, 𝜓𝑝 and 𝜓𝑞 calculated 

by using respective expressions (7b) and (8b) under similar conditions as of Fig. 2a. 

The phase component 𝜓𝑝 for both drive frequencies 𝜔𝑑 = 𝜔1𝑥 and 𝜔𝑑 = 1.005 𝜔1𝑥, 

is nearly zero for entire calculated range of 𝛼 and related curves overlap with each 

other. While 𝜓𝑞, for 𝜔𝑑 = 𝜔1𝑥, is zero at 𝛼 = 0 and abruptly goes gown to -90o as 𝛼 

increases and persists with this value for the entire calculated range of 𝛼. On the other 

hand for 𝜔𝑑 = 1.005 𝜔1𝑥, the component 𝜓𝑞 rises steeply from -180o to -90o  as 𝛼 

increases and then persists with latter value for rest of the calculated range of 𝛼. From 

this it is inferred that both in-phase and quadrature signal components are at 90o of 

phase difference. 

Figure 2c reveals that for 𝜔𝑑 = 0.95 𝜔1𝑥, both the components 𝐴𝑝 and 𝐴𝑞, have the 

same nature of variation in their magnitudes as shown in Fig. 2a. However, for 

𝜔𝑑 = 1.05 𝜔1𝑥 , the magnitudes of 𝐴𝑝  and 𝐴𝑞  are almost the same as those for 

𝜔𝑑 = 0.95 𝜔1𝑥, within the range, 𝛼 < 0.04 𝜔𝑑, but beyond this range of 𝛼 both 𝐴𝑝 

and 𝐴𝑞 rise steeply and peak at about 𝛼 = 0.06 𝜔𝑑. Thereafter, both amplitude com-

ponents decrease sharply and interchange their magnitudes, thus, showing balancing 

natures with each other.  

The significant changes have occurred in the phase characteristics for such a deviation 

in the drive frequency as shown in the Fig. 2d. For 𝜔𝑑 = 0.95 𝜔1𝑥, 𝜓𝑝 is zero and 

invariant with the variation of 𝛼. At the same time, 𝜓𝑞 is about zero at 𝛼 = 0 and then 

increases with 𝛼 and reaches to 90o which persists for the entire calculated range of 𝛼. 
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The components 𝜓𝑝  and 𝜓𝑞  for 𝜔𝑑 = 1.05 𝜔1𝑥 , show different characteristics. The 

phase component 𝜓𝑞 originates at -180o and as 𝛼 increases phase value reaches to -

90o at about 𝛼 = .06 𝜔𝑑. Then it starts decreasing up to -270o, whereas 𝜓𝑝 is zero in 

the beginning and then it fluctuates from zero to negative values by varying 𝛼. 

 
 

  

Fig. 2. Bode plots of demodulated and then filtered in-phase and quadrature components of 

amplitudes and corresponding phases, a amplitudes b phases for 𝜔 = 𝜔𝑑 = 𝜔1𝑥 and for 

𝜔𝑑 = 1.005 𝜔1𝑥, c amplitudes d phases for 𝜔𝑑 = 1.05 𝜔1𝑥 and  for 𝜔𝑑 = 0.95 𝜔1𝑥, (symbols 

are Simulink results) 

The transient response of the in-phase component with respect to time which is a 

result of linear acceleration is shown in Fig. 3, after demodulation and filtration. The 

Simulink results use the same conditions as that for the analytical analysis, which 

considers the settled transient response of the device. It can be observed in Fig. 3 that 

the device settles down at about 0.24 ms. The time required for settling down depends 

on the ambient pressure at which the device is operated. The in-phase displacement 

component, �̅�𝑙𝑝 is plotted using equation (7) and it clearly shows an excellent match 

between analytical and Simulink results. Figure 3 also shows that when the device is 

driven at frequency, zero-phase frequency, acceleration part is zero and gyro action is 

dominant, indicated by a sinusoidal variation Hence, angular rate can be measured 

through the in-phase output. 

Figure 4 shows the transient response of the quadrature output signal (�̅�𝑙𝑞) calculated 

by using (8), which is a result of the combined action of Coriolis and Euler’s forces. It 

is evident from the plot that the acceleration action is dominant and gyro action is 

zero. Hence, acceleration action can be determined from the quadrature output. This 
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figure also includes Simulink data showing excellent agreement with the analytical 

results. 

 

  
Fig. 4. Quadrature component (�̅�𝒍𝒒) displacement variation with time, (ℛ𝑒𝑥 = 10g) 

Conclusion 

The simultaneous detection scheme of time varying angular rate and linear accelera-
tion utilizes the synchronous demodulation that yields in-phase and quadrature output 
signals of the systems. In case of matched zero phase frequencies of both the oscilla-
tors, the associated acceleration term in in-phase component becomes ineffective and 
the device deliver only angular rate related signals, whereas the quadrature signal is 
dominant by acceleration action and that related to angular rate becomes almost in-
significant. Therefore, in-phase signal can be used for acceleration detection and 
quadrature one for angular rate extractions. MATLAB®/Simulink model of the gyro-
accelerometer system was developed in order to investigate the feasibility of such a 
detection scheme and simulation results have shown excellent correspondence with 
analytical results. 
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