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Introduction

The study of the nature and patterns of occurrence of oscillations in dynamic sys-
tems are traditionally of interest [1]. Particular attention is paid to the study of
self-oscillatory regimes, which usually are unfavorable for the functioning of the
technical systems. Hence we should be able to predict and suppress such modes.
On the other hand, there is a number of modern technologies, such as chemical
industry and the energy sector, requiring the creation of the reactors substan-
tially non-equilibrium regimes, including oscillatory and, on the contrary, there
is the need to generate and control the self-oscillatory regimes. In this paper
we investigate several types of oscillations in the one model of electrochemical
reactor [2]: the oscillations of relaxation type, small oscillations (when the stable
limit cycle is small), and the critical oscillations (the canards [3, 4]).

Mathematical model of the Koper-Sluyters electrocatalytic
reaction

The Koper-Sluyters electrocatalytic reaction (KS–reaction) is a chemical reac-
tion corresponding to the following kinetic scheme (written by the symbols used
by the authors [2]):

Xbulk
D/δ−−−→ Xsur

ka­
kd

Xads
ke−→ P + ne−.

Here X is the single species, which diffuses towards the electrode where it suc-
cessively adsorbs and is electrochemically oxidized; D is the diffusion coefficient
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of X; δ is the thickness of the Nernst diffusion layer; ka, ke, kd are the rate
constants for adsorption, desorption and electron transfer, respectively. The ox-
idation products P are assumed not to be adsorbed and to leave neighborhood
of the interface.
The mathematical model of the KS–reaction in dimensionless form is [2]

du

dt
= −kaeγθ/2u(1− θ) + kde

−γθ/2θ + 1− u = f(u, θ), (1)

β
dθ

dt
= kaeγθ/2u(1− θ)− kde

−γθ/2θ − kee
α0fEθ = g(u, θ), (2)

where u is the dimensionless interfacial concentration of X; θ is the dimension-
less amount of X that is adsorbed on the electrode surface; E is the electrode
potential; β is the coverage ratio of the adsorbate; α0 is the symmetry factor
for the electron transfer; and f = F/(RT ), where R, F and T have their usual
meaning [5]. The physical meaning of the parameter γ has always been a subject
of dispute. In most of the literature it is interpreted as an interaction param-
eter. Positive γ signifies attractive and negative γ signifies repulsive adsorbate
interactions.
Since the parameter β is small, the system (1), (2) is singularly perturbed. We
will investigate the dynamics of the solutions depending on the values of the
additional parameters of the system (1), (2). The study will be carried out
by using methods of the theory of singular perturbations [6, 7] and numerical
methods.
One of the major problems of chemical kinetics is a problem of management of
chemical processes. The goal of the control of the KS–reaction is the obtaining
a relatively high value of the reactant concentration in the framework of a safe
process. It has been found that this goal is realized during the critical mode.
The determination of the conditions of occurrence of a critical regime in the
considered chemical system is the main objective of this study.

Analysis of the slow curve

The equation of the slow curve [4,6] of (1), (2) is determined from the expression
g(u, θ) = 0 and has the form

u =
(kde

−γθ/2 + kee
α0fE)θ

kaeγθ/2(1− θ)
. (3)

To study the stable and unstable parts we should find the jump points [4, 6] on
the slow curve (3).
The coordinates of the jump points are determined by the system:
{

g(u, θ) = 0,
∂g(u,θ)

∂θ = 0.
(4)

For (1), (2) the system (4) has the form
{

kaeγθ/2u(1− θ)− kde
−γθ/2θ − kee

α0fEθ = 0,

kau(1− θ)γ
2 eγθ/2 − kaueγθ/2 − kde

−γθ/2 + kde
−γθ/2θ γ

2 − kee
α0fE = 0.

(5)
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The system (5) is transcendental, and therefore, it is impossible to find the
solutions of the system in an analytical form, but with specific values of param-
eters, this system is solved numerically [8]. The jump points separate the stable
(attractive) and unstable (repelling) parts of the slow curve (3).
The shape of the slow curve depends on the value of the parameters. Depending
on the ratio of the parameters the three following cases are possible.
In the first case, 0 < γ < 4, the system (5) has no solutions. Therefore, the slow
manifold is either entirely stable or entirely unstable. Due to the fact that

∂g(u, θ)
∂θ

< 0,

i.e.,

kau(1− θ)
γ

2
eγθ/2 − kaueγθ/2 − kde

−γθ/2 + kde
−γθ/2θ

γ

2
− kee

α0fE < 0,

the slow curve is stable in this case. Hence, the trajectories of the system (1),
(2) are attracted to the slow curve and then follow along it.
Let us consider the second case when γ ≈ 4. In this case, the system (5) has one
solution. The derivative ∂g(u, θ)/∂θ in the transition through this point does
not change its sign. So, we should find the inflection points. The coordinates of
the inflection points are determined by the system

{
g(u, θ) = 0,
∂2g(u,θ)

∂θ2 = 0.
(6)

The system (6) in this case has a unique solution, and the slow curve is stable
in this case.
In the last case, when γ > 4, the system (5) has two solutions. The shapes of
the slow curve have the form as shown in Fig. 1.
Thus, for γ > 4 the jump points divide the slow curve into three parts, which are
zeroth approximations of the corresponding integral manifolds: near the stable
branches F1 and F3 there are the stable slow integral manifolds M1 and M3,
respectively; near the unstable branch F2 there is the unstable slow integral
manifold M2.
A system’s trajectory, starting from an initial point in the basin of attraction of
the stable slow integral manifold M1 (or M3), will be attracted to it with the
velocity of the fast variable of order O( 1

β ) as β → 0 and then follows along it
with the velocity of the slow variable, of the order O(1) as β → 0. The further
behavior of the trajectory will depend on the location of the critical point of the
system (1), (2).

Critical point

The critical points of the system (1), (2) are determined by the system
{

g(u, θ) = 0,

f(u, θ) = 0,

which for the system (1), (2) has the form:
{
−kaeγθ/2u(1− θ) + kde

−γθ/2θ + 1− u = 0,

kaeγθ/2u(1− θ)− kde
−γθ/2θ − kee

αofEθ = 0.
(7)
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Fig. 1. The slow curve of the system (1), (2) for (top, left) 0 < γ < 4, (top, right)

γ ≈ 4, (bottom) γ > 4

From the system (7) we get:

u∗ = 1− kee
αofEθ. (8)

Substituting (8) into the second equation of the system (7), we obtain the equa-
tion that determines the value θ = θ∗:

kaeγθ/2(1− kee
αofEθ)(1− θ)− kde

−γθ/2θ − kee
αofEθ = 0. (9)

Thus, we obtain the critical point

A
(
θ∗, 1− kee

αofEθ∗
)
,

where θ∗ is the solution of the equation (9).
The Jacobian matrix of the system (1), (2):
(

∂f(u,θ)
∂u

∂f(u,θ)
∂θ

∂g(u,θ)
∂u

∂g(u,θ)
∂θ

)
,

has the characteristic equation

λ2 + λξ1 + ξ2 = 0,

with the discriminant

D = ξ2
1 − 4ξ2,

where

ξ1 =
ka

β
eγθ∗/2(1− kee

α0fEθ∗)(1− γ

2
(1− θ∗)) +

kd

β
e−γθ∗/2(1− γθ∗

2
)
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+
ke

β
eα0fE + kaeγθ∗/2(1− θ∗) + 1,

ξ2 =
ka

β
eγθ∗/2(1− kee

α0fEθ∗)(1− γ

2
(1− θ∗)) +

kd

β
e−γθ∗/2(1− γθ∗

2
)

+
ke

β
eα0fE +

kake

β
eγθ∗/2(1− θ∗)eα0fE .

The type of critical point and its coordinates depends on the value of the pa-
rameter γ. Let us consider the most interesting case when γ > 4. Without loss
of generality the parameters of the system are chosen to be ε = 0.2, γ = 8.99,
ka = 10, kd = 100, α0 = 0.05, f = 38, 7, E = 0.207564 unless other values are
specified in figure captions.
In [8] it has been shown that the critical point is a stable focus when it lies on
the stable part of the slow curve (see Fig. 2) and it is an unstable focus when
it lies on F2. In the second case the relaxation oscillations are observed in the
system, see Fig. 3.

Fig. 2. The slow curve (red line) and the trajectory (black line) of the system (1),

(2); ke = 0.8

Fig. 3. Relaxation oscillations in the system (1), (2); ke = 1.285

The transition between these two situations corresponds to the case when the
critical point coincides with the jump point, the stable equilibrium of the system
becomes unstable, and at the same instant the stable limit cycle is originated,
i.e., the Andronov–Hopf bifurcation occurs, see Fig.4. With further minor mod-
ifications of the control parameter, say ke, (other parameters are fixed), the
critical point moves on the unstable part of the slow curve, staying in small
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(of order O(β) as β → 0) neighbourhood of the jump point. As parameter ke

changes further this limit cycle grows, and at a value ke = k∗e (so-called canard
point) it becomes the canard cycle (see Fig. 5) with the following it canard
explosion [3, 9–11]. Recall that the trajectories which at first move along the
stable slow integral manifold and then continue for a while along the unstable
slow integral manifold are called canards [4, 6].
From the first sight the threshold in the qualitative behaviour of the solutions of
the system corresponds to the Andronov–Hopf bifurcation point. However, when
the value of the control parameter is close to the Andronov–Hopf bifurcation
point, the size of the limit cycle is so small that the behavior of the system’
solution is practically indistinguishable from the slow mode. If, in the case of slow
regime, the trajectories approach the stable equilibrium, practically coinciding
with the jump point, in the later case they tend to a small limit cycle, nearly
coinciding with the same jump point. And only when the control parameter
attains the canard point, provided the equilibrium is on the unstable part of the
slow curve, but in the sufficiently small vicinity of the jump point, the qualitative
change in the system’s behavior can be observed. Namely, the growth of the limit
cycle occurs in such a way that it becomes possible to speak of the existence of
the canard trajectory. In other words, the appreciable change in size and/or in
form of the limit cycle is observed for small variations of the control parameter,
i.e. the canard explosion takes place. Thus, the canard point is the critical value
of the control parameter.

Fig. 4. Andronov-Hopf bifurcation in the system (1), (2); ke = 0.92

Fig. 5. The slow curve (red line) and the canard (black line) of the system (1), (2);

ke = 0.920529
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The Andronov-Hopf bifurcation in the model

The sufficient conditions for the Andronov–Hopf bifurcation occurring in the
system (1), (2) are [8]:

ξ1 = 0, (10)

ξ2
1 − 4ξ2 < 0. (11)

Taking into account (10) we can rewrite (11) as

ξ2 > 0. (12)

The expressions (10) and (12) in more detailed form are

ka

β
eγθ∗/2u∗

(
1− γ

2
(1− θ∗)

)
+

kd

β
e−γθ∗/2

(
1− γθ∗

2

)
+

ke

β
eα0fE

= −kaeγθ∗/2(1− θ∗)− 1, (13)

ka

β
eγθ∗/2

(
1− kee

α0fEθ∗
) (

1− γ

2
(1− θ∗)

)
+

kd

β
e−γθ∗/2

(
1− γθ∗

2

)

+
ke

β
eα0fE +

kake

β
eγθ∗/2(1− θ∗)eα0fE > 0. (14)

Substituting (13) in (14) yields

kakee
γθ∗/2(1− θ∗)eα0fE − β(kaeγθ∗/2(1− θ∗) + 1) > 0. (15)

Thus, the expressions (13) and (15) give us the sufficient condition for the
Andronov-Hopf bifurcation in the system under consideration. It should be
noted that for β → 0 the condition (15) is fulfilled for all values of parameters.
In the system (1), (2) the Andronov–Hopf bifurcation can occur either in the
neighborhood of jump point A1 or A2. The Fig. 6 demonstrates the stable limit
cycle of the system (1), (2) arising via the Andronov–Hopf bifurcation in the
neighborhood of jump point A1.

Fig. 6. (left) The slow curve (red line) and the limit cycle (black line) of the system

(1), (2) and (right) plots of u(t) (blue line), θ(t) (yellow line) for ke = 2.40855
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Canards

The canards and the parameter value k∗e allow asymptotic expansions in powers
of the small parameter β [4, 6, 11]:

u = Φ(θ, β) = u0(θ) + βu1(θ) + β2u2(θ) + . . . , (16)

k∗e = χ(β) = χ0 + βχ1 + β2χ2 + . . . . (17)

In order to find these asymptotic expansions for the canard and the canard point
we substitute the formal expansions (16) and (17) into the invariance equation [6]

du

dθ
g(u, θ) = βf(u, θ).

which follows from the system (1), (2). As a result we obtain the following
equation:
(
kaeγθ/2(1− θ)(u0 + βu1 + β2u2 + . . . )− (χ0 + βχ1 + β2χ2 + . . . )eα0fEθ

−kde
γθ/2θ

)
(u′0 + βu′1 + β2u′2 + . . . ) = −βkaeγθ/2(1− θ)(u0 + βu1 + β2u2 + . . . )

+β
(
kde

γθ/2θ + 1− u0 − βu1 − β2u2 + . . .
)

. (18)

On setting equal the coefficients of powers of β in the equation (18) we find
the functions u0(θ), u1(θ), . . . . To obtain the values χ0, χ1, . . . we require
the continuity of the functions ui(θ) (i = 0, 1, ...) at the jump point. This
requirement means that we glue the stable and the unstable integral manifolds
at the jump point and, as a result, construct the canard passing through this
point [4, 6, 9]. As a result we have:

u0(θ) =
(kde

−γθ/2 + χ0e
α0fE)θ

kaeγθ/2(1− θ)
, (19)

u1(θ) =
−kau0(θ)(1− θ)eγθ/2 + kde

−γθ/2θ + 1− u0(θ) + χ1e
α0fEθu′0(θ)

kaeγθ/2u′0(θ)
, (20)

χ0 =
ka(1− θ̄)eγθ̄/2 − kde

−γθ̄/2θ̄

(ka(1− θ̄)eγθ̄/2 − 1)eα0fE θ̄
, (21)

χ1 = −kau1(θ̄)(1− θ̄)eγθ̄/2 + u1(θ̄) + kau1(θ̄)u′1(θ̄)(1− θ̄)eγθ̄/2

eα0fE θ̄u′1(θ̄)
, (22)

where the value θ = θ̄ corresponding to the jump point can be calculate from
the system (4). The equations (19)–(22) define the first–order approximations
for the canard and the canard point of the system (1), (2) in a neighborhood of
the jump point (u(θ̄), θ̄). It should be noted that we can construct the canard
either in the neighborhood of jump point A1 (by gluing the stable slow integral
manifold M1 and the unstable one M2, see Fig. 7) or in the neighborhood of
A2 (by gluing the stable slow integral manifold M3 and M2, see Fig. 8). If it is
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necessary to glue stable and unstable slow invariant manifolds at the both jump
points simultaneously, we should use two control parameters and as a result we
obtain a canard cascade [12].

Fig. 7. (left) The slow curve (red line) and the canard (black line) of the system (1),

(2) and (right) plots of u(t) (blue line), θ(t) (yellow line) for ke = 2.4055

Fig. 8. (left) The slow curve (red line) and the canard (black line) of the system (1),

(2) and (right) plots of u(t) (blue line), θ(t) (yellow line) for ke = 0.9205283

Conclusion

In the paper the dynamical model of the electrochemical reactor has been inves-
tigated. The critical regime separating the basic types of the regimes, slow and
relaxation, was modelled with the help of the integral manifolds of variable sta-
bility. This approach was used in [13–23] for modelling of the critical phenomena
in chemical systems.
The bifurcation point at which the supercritical Andronov–Hopf bifurcation
takes place as well as the canard point of the control parameter at which the
system has the canard cycle have been determined analytically. It is shown that
the critical mode is modelled by the canard. The obtained results is of utmost
importance for several applications in chemical kinetics, as they can be used to
determine the dynamics of the process in the chemical system for given initial
conditions.
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