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Abstract. In this paper we propose an idea to use a certain property of
multivariate probability distributions, that we call the conditional quan-
tile reproducibility, to decrease the amount of observations required to
construct a statistical estimate of a n-dimensional conditional quantile
of the distribution. For the class of probability distributions, satisfying
to this property, we present several results, proving that in many cases
the reproducibility property allows us to restore the n-dimensional con-
ditional quantile by solving a certain type of Pfaffian differential equa-
tion. The equation is constructed from functions, derived only from the
2-dimensional marginal distributions of the initial distribution.
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1 Introduction

Many of the widely used multivariate probability distributions satisfy to a cer-
tain property of the multivariate conditional quantiles which we call “quantile
reproducibility”. Among them are the multivariate Gaussian distribution, Stu-
dent’s distribution, Logistic distribution, Pareto distribution, Gamma distribu-
tion, Clayton’s Copula distribution and others (see [9, 8, 6, 5]).
This article gives several results related to the quantile reproducibility property
of the multivariate distributions. Particularly we prove that when the distribu-
tion satisfies to the quantile reproducibility property (we also say it “has repro-
ducible conditional quantiles”), the solution of a Pfaffian differential equation of
certain form, that can be constructed by only knowing 2-dimensional marginal
distributions of the original distribution, is equal to a distribution’s multivariate
conditional quantile. In other words by solving the Pfaffian differential equa-
tion we build a multivariate quantile from bivariate functions, describing the
probability distribution.
The outline of this article is as follows. In Section 2 we introduce the multivariate
conditional quantiles and discuss some of their applications. In Section 3 we give
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the definition of the quantile reproducibility for multivariate distributions and
talk on its geometrical interpretation.
In Section 4 we introduce the Pfaffian differential equation for the distribution
which we refer to as the “quantile equation”. We also show that the solution
of the maximum possible dimension for the quantile equation of a distribution
with reproducible quantiles equals a conditional quantile of the maximum di-
mension. Section 5 gives several concrete examples of multivariate distributions
with reproducible quantiles along with the corresponding quantile equations.
In Section 6 we give an intermediate version of the quantile reproducibility
property and prove that, when it is satisfied, one can find the solutions of the
quantile equation of intermediate dimensions. In Section 7 we illustrate this
theorem by giving an example of the distribution with this version of quantile
reproducibility and finding the solutions of the quantile equation for it.
In Section 8 we discuss how the quantile reprodicibilty property could be used
in statistical estimation. For the case when it is known that the distribution
has reproducible conditional quantiles, we propose a technique to build the
multivariate quantile estimate by only using bivariate observations. We also
show that this technique allows us to reduce the required number of observations
when compared to a traditional approach to multivariate quantile estimation.

2 Conditional Quantiles and Their Applications

First, we will give the definition of the multivariate conditional quantile. Con-
sider a system of random variables X1, X2, . . . , Xn.
Suppose we have the conditional cumulative distribution function

Fi|1...̂i...n(xi|x1, . . . x̂i, . . . , xn)

(the sign ·̂ over the element ·means that the element is omitted), which is contin-
uous and increases monotonically in xi for any fixed vector (x1, . . . x̂i, . . . , xn) ∈
Rn−1.
The conditional quantile q

(p)

i|1...̂i...n(x1, . . . x̂i, . . . , xn) of level p ∈ [0, 1] for a ran-

dom variable Xi given X1, . . . , X̂i, . . . , Xn is defined by the equation

Fi|1...̂i...n(q
(p)

i|1...̂i...n(x1, . . . x̂i, . . . , xn)|x1, . . . x̂i, . . . , xn) ≡ p

for any (x1, . . . x̂i, . . . , xn) ∈ Rn−1.
The conditional median mi|1...̂i...n(x1, . . . x̂i, . . . , xn) for a random variable Xi

given X1, . . . , X̂i, . . . , Xn is a conditional quantile of level p = 1
2 .

Another way to define a conditional quantile is to give a certain point x ◦ =
(x◦1, . . . , x

◦
n) ∈ Rn, lying on the quantile surface:

F1| 2...n

(
q
(x◦)
1|2...n(x2, . . . , xn)|x2, . . . , xn

)
≡ F1| 2...n(x◦1|x◦2, . . . , x◦n).

The conditional quantile is then said to be going through x ◦. In this case the
level of the quantile is given by p = F1| 2...n(x◦1|x◦2, . . . , x◦n).
One of the several applications of the conditional quantiles is using them as
random variable estimates. Consider the following situation. We have a set
of random variables X1, X2, . . . , Xn. We observe the first n − 1 of them, and
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the last one needs to be estimated. We also know the conditional distribution
function Fn|1...n−1(xn | x1, . . . , xn−1) which is supposed to be monotonic in xn.
Now, having defined a loss function

ρτ (u) =

{
(τ − 1)u, u ≤ 0,
τu, u > 0.

τ ∈ (0, 1).

we want to get the estimate for the last random variable Xn, so that it would
minimize the conditional loss.

f̂(x1, . . . , xn−1) : min
f(·)

M{ρτ (Xn − f(x1, . . . , xn−1)) | x1, . . . , xn−1}

Rather simple calculations will lead us to the following formula for the Xn

estimate.

Fn|1...n−1(f̂(x1, . . . , xn−1) | x1, . . . , xn−1) ≡ τ

That is any value to satisfy to this equation would minimize the loss function.
As long as the F is monotonic in xn, there is only one such value, which is the
conditional quantile

f̂(x1, . . . , xn−1) = F−1n|1...n−1(τ | x1, . . . , xn−1) = q
(τ)
n|1...n−1(x1, . . . , xn−1).

Further on, it is also known (see [10]), that the estimate, minimizing the condi-
tional loss, will also minimize the expected loss (the bayesian risk):

M{ρτ (Xn − f̂(X1, . . . , Xn−1))} = min
f(·)

M{ρτ (Xn − f(X1, . . . , Xn−1))

3 Reproducible Conditional Quantiles

Consider a vector of random variables X = (X1, . . . , Xn) with the cumulative
distribution function F1...n(x1, . . . , xn), the multivariate strictly positive density

f1...n(x1, . . . , xn) > 0, ∀(x1, . . . , xn) ∈ Rn,

and the conditional distribution functions

P{X1 ≤ x1 | X2 = x2, . . . , Xn = xn} = F1|2...n(x1 | x2, . . . , xn),

P{Xi ≤ xi | Xj = xj} = Fi|j(xi | xj), i 6= j, i, j = 1, n.

By fixing a point x ◦ = (x◦1, . . . , x
◦
n) ∈ Rn, we get a family of conditional quan-

tiles, going through the selected point, which act as level surfaces (or curves) of
the conditional CDF:

F1|2...n

(
q
(x◦)
1|2...n(x2, . . . , xn) | x2, . . . , xn

)
≡ F1|2...n(x◦1 | x◦2, . . . , x◦n),

q
(x◦)
1|2...n(x◦2, . . . , x

◦
n) = x◦1,

Fi|j

(
q
(x◦

i ,x
◦
j )

i|j (xj) | xj
)
≡ Fi|j(x◦i | x◦j ), q

(x◦
i ,x

◦
j )

i|j (x◦j ) = x◦i , i 6= j.
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Definition 1. (see [8]) We say that the multivariate probability distribution
F1...n(x1, . . . , xn) has reproducible conditional quantiles if the system of identi-
ties

q
(x◦)
1|2...n

(
x2, q

(x◦
3 ,x

◦
2)

3|2 (x2), . . . , q
(x◦

n,x
◦
2)

n|2 (x2)
)
≡ q(x

◦
1 ,x

◦
2)

1|2 (x2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q
(x◦)
1|2...n

(
q
(x◦

2 ,x
◦
n)

2|n (xn), . . . , q
(x◦

n−1,x
◦
n)

n−1|n (xn), xn

)
≡ q(x

◦
1 ,x

◦
n)

1|n (xn)

(1)

holds for any given point x◦=(x◦1, . . . , x
◦
n) ∈ Rn.

For a geometric interpretation, consider the curves, parametrized by the “small”
conditional quantiles (k = 2, n).

γk(x ◦, t) = {q(x
◦
1 ,x

◦
k)

1|k (t), . . . , q
(x◦

k−1,x
◦
k)

k−1|k (t), t, q
(x◦

k+1,x
◦
k)

k+1|k (t), . . . , q
(x◦

n,x
◦
k)

n|k (t)},

The quantile reproducibility would mean that these curves lie on the “big”
quantile surface:

Γ(x◦)(x2, . . . , xn) = {q(x
◦)

1|2...n(x2, . . . , xn), x2, . . . , xn}.

4 Quantile Pfaffian Differential Equations and Their Re-
lation to Quantile Reproducibility

It can be shown that for the class of multivariate probability distributions with
reproducible conditional quantiles we can construct the “big” (n − 1)-variate
conditional quantile as the solution of a Pfaffian differential equation of special
form. The equation itself is based on the functions, derived from the conditional
quantiles of dimension 1, corresponding to the 2-dimensional marginal distribu-
tions of the initial distribution. In other words, using the property of quantile
reproducibility, we can virtually shift from bivariate functions, characterizing
the probability distribution, to its multivariate characteristic.
Again we consider a random vector X = (X1, . . . , Xn) with cumulative distri-
bution function F1...n(x1, . . . , xn) and strictly positive density

f1...n(x1, . . . , xn) > 0, ∀(x1, . . . , xn) ∈ Rn.

Let us introduce the determinant

W(x◦) =

∣∣∣∣∣∣∣∣∣
e1 e2 e3 . . . en

q̇
(x◦

1 ,x
◦
2)

1|2 (x◦2) 1 q̇
(x◦

3 ,x
◦
2)

3|2 (x◦2) . . . q̇
(x◦

n,x
◦
2)

n|2 (x◦2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

q̇
(x◦

1 ,x
◦
n)

1|n (x◦n) q̇
(x◦

2 ,x
◦
n)

2|n (x◦n) q̇
(x◦

3 ,x
◦
n)

3|n (x◦n) . . . 1

∣∣∣∣∣∣∣∣∣ .
We denote by ei the basis vectors in Rn. The point over the quantile means dif-

ferentiation, that is q̇
(x◦

i ,x
◦
j )

i|j (x◦j ) is the derivative of the one-dimensional quantile

q
(x◦

i ,x
◦
j )

i|j (xj) with respect to xj , going through the point (x◦i , x
◦
j ) and taken at

xj = x◦j .
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To simplify the notation let us expand the determinant along the first row

W(x◦) =

n∑
k=1

A1k(x◦1, . . . , x
◦
n) ek.

Each of the cofactors A1k will depend on a set of quantile derivatives q̇
(x◦

i ,x
◦
j )

i|j (x◦j ).

Now we replace the point x◦ = (x◦1, . . . , x
◦
n) with x = (x1, . . . , xn), which is

variable in Rn, and consider the differential 1-form

ω =

n∑
k=1

A1k(x1, . . . , xn)dxk.

Next we construct a Pfaffian differential equation for the form

ω =

n∑
k=1

A1k(x1, . . . , xn)dxk = 0.

We call it the quantile equation.

Theorem 1. If the probability distribution F1...n(x1, . . . , xn) with a joint PDF
positive on Rn has reproducible conditional quantiles (1), and A11(x1, . . . , xn) 6=
0, then the quantile equation

ω =

n∑
i=1

A1i(x1, . . . , xn)dxi = 0 (2)

is completely integrable. The solution of (2) going through the given point x◦ is

the “big” conditional quantile x1 = q
(x◦)
1|2...n(x2, . . . , xn).

The proof of this theorem is given in [6].
A well known result, the Frobenius theorem (see [1] p. 97), gives a necessary
and sufficient condition of the complete integrability of the Pfaffian differential
equation. It states that the equation (2) is completely integrable if and only if

dω ∧ ω = 0, (3)

where dω is the exterior differential of the differential 1-form ω and ∧ means
the exterior product of the two differential forms.

5 Examples

Many commonly used multivariate distributions have reproducible conditional
quantiles. Some of the examples are multivariate Gaussian distribution, mul-
tivariate Gamma distribution, multivariate Student distribution, multivariate
Logistic distribution, multivariate Pareto distribution, Clayton copula (see [4]).
Here to illustrate our results we present only a few specific distributions along
with their quantile equations. All of the equations can be solved using the
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well-known elementary methods (see for example [7]).

Tabl.1. Quantile equations for some distributions

Densities Quantile equations

1. φ(x;m, [σij ])
n∑
k=1

σ1kdxk = 0

2. 1
π2(1+x21+x

2
2+x

2
3)

2 (1 + x22 + x23)dx1 − x1x2dx2 − x1x3dx3 = 0

3. 6 e−(x1+x2+x3)

(1+e−x1+e−x2+e−x3)4
(ex2 + ex3 + ex2+x3)dx1 − ex3dx2 − ex2dx3 = 0

4. 6
(x1+x2+x3−2)4

(x2 + x3 − 1)dx1 + (1 − x1)dx2 + (1 − x1)dx3 = 0

xi ≥ 1, i = 1, 2, 3

1–Gaussian distribution, 2–Cauchy distribution, 3–Logistic distribution,

4–Pareto distribution

6 The Darboux Class for Quantile Differential Equations
and Its Relation to Reproducibility

Now what if the quantile differential equation is not completely integrable? Are
there cases when we can say something about the solutions of this equation?
To answer this question, let us first remind the reader about one of the character-
istics of the differential 1-forms (and as a consequence of the Pfaffian differential
equations) - the Darboux class. As the Darboux theorem (see [3]) states, the
class gives the maximum dimension of the integral manifold of the corresponding
Pfaffian differential equation.

Definition 2. If the differential 1-form ω satisfies the equality

ω ∧ (dω)r 6= 0, but ω ∧ (dω)r+1 = 0,

then we say that the Darboux class of the differential form equals 2r + 1.

As we have already mentioned (see section 4), the equality

dω ∧ ω = 0 (4)

gives the criterion for complete integrability of a Pfaffian equation (Frobenius
theorem). In this case r = 0, so the Darboux class of the differential form ω is
equal to 1.

Theorem (Darboux’s theorem). If the Darboux class of the differential 1-form
1 ω equals 2r + 1, then by a smooth local change of coordinates the Pfaffian
equation

ω =

n∑
k=1

ak(x1, ..., xn)dxk = 0

1with coefficients ak(x1, ..., xn) not equal to zero simultaneously
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can be converted to the canonical form

dy1 + y2dy3 + . . .+ y2rdy2r+1 = 0.

In this case the Pfaffian equation has an integral manifold of maximum dimen-
sion n− r − 1 with the following first integrals:

y1(x1, ..., xn) = C1 = const, y3(x1, ..., xn) = C3 = const, . . . ,

y2r+1(x1, ..., xn) = C2r+1 = const.

As noted above, if the condition (4) holds, then r = 0. So, according to the
Darboux’s theorem, the maximum dimension of the integral manifold must equal
n−1, which means the complete integrability of the equation. This agrees with
the Frobenius theorem given earlier.
Let us now sum up. For the given quantile equation we can calculate the
Darboux class of the corresponding differential 1-form. From this value we
obtain the maximum dimension of the integral manifold. But still what is the
integral manifold itself?
We will now show, that for multivariate probability distributions with certain
type of quantile reproducibility, the solutions can be given explicitly.
To do this, we will first establish one useful property of matrix determinants
(see [5]).
Let us consider the determinant of order n, where n− 1 ≥ k, of the form2

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dx1 dx2 . . . dxk dxk+1 . . . dxn−1 dxn
1 q̇2|1 . . . q̇k|1 q̇k+1|1 . . . q̇n−1|1 q̇n|1
. . . . . . . . . . . . . . . . . . . . . . . .
q̇1|k q̇2|k . . . 1 q̇k+1|k . . . q̇n−1|k q̇n|k
q̇1|k+1 q̇2|k+1 . . . q̇k|k+1 1 . . . q̇n−1|k+1 q̇n|k+1

. . . . . . . . . . . . . . . . . . . . . . . .
q̇1|n−1 q̇2|n−1 . . . q̇k|n−1 q̇k+1|n−1 . . . 1 q̇n|n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We will denote the cofactor of the element dxi in the first row of M by A(dxi).

Lemma 1. The following expansion for the determinant M is true:

A(dxk+1)

S

∣∣∣∣∣∣∣∣
dx1 dx2 . . . dxk dxk+1

1 q̇2|1 . . . q̇k|1 q̇k+1|1
. . . . . . . . . . . . . . .
q̇1|k q̇2|k . . . 1 q̇k+1|k

∣∣∣∣∣∣∣∣+ . . .+
A(dxn)

S

∣∣∣∣∣∣∣∣
dx1 dx2 . . . dxk dxn
1 q̇2|1 . . . q̇k|1 q̇n|1
. . . . . . . . . . . . . . .
q̇1|k q̇2|k . . . 1 q̇n|k

∣∣∣∣∣∣∣∣ ,
(5)

where

S =

∣∣∣∣∣∣
1 q̇2|1 . . . q̇k|1
. . . . . . . . . . . .
q̇1|k q̇2|k . . . 1

∣∣∣∣∣∣ .
The proof of this lemma is given in [5].

2The given expansion holds for determinants of general form.
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Suppose x0 := (x01, . . . , x
0
n). For all the natural numbers s = 1, n− 1 and

i = s+ 1, n we will denote:

q
(x0)
i|1...s(x1, . . . , xs) = q

(x0
1,...,x

0
s,x

0
i )

i|1...s (x1, . . . , xs).

Next, for a random vector X = (X1, . . . , Xn) we will suppose that k < n− 1 of
its variables are fixed. Without loss of generality we can think that these are
the first k variables x1, . . . , xk.

Theorem 2. If the probability distribution F1...n(x1, ..., xn) has reproducible
k-dimensional conditional quantiles, that is

q
(x0)
i|1...k(x1, q

(x0)
2|1 (x1), q

(x0)
3|1 (x1), . . . , q

(x0)
k|1 (x1)) = q

(x0)
i|1 (x1)

q
(x0)
i|1...k(q

(x0)
1|2 (x2), x2, q

(x0)
3|2 (x2), . . . , q

(x0)
k|2 (x2)) = q

(x0)
i|2 (x2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q
(x0)
i|1...k(q

(x0)
1|k (xk), q

(x0)
2|k (xk), . . . , q

(x0)
k−1|k(xk), xk) = q

(x0)
i|k (xk)

(6)

and the determinant

S =

∣∣∣∣∣∣∣
1 q̇

(x0)
2|1 (x1) . . . q̇

(x0)
k|1 (x1)

. . . . . . . . . . . .

q̇
(x0)
1|k (xk) q̇

(x0)
2|k (xk) . . . 1

∣∣∣∣∣∣∣ 6= 0, (7)

then the surface

Γ
(x0)
k (x1, . . . , xk) =

=
{(
x1, . . . , xk, q

(x0)
k+1|1...k(x1, . . . , xk), . . . , q

(x0)
n|1...k(x1, . . . , xk)

)}
,

(8)

constructed from the k-dimensional quantiles, is a k-dimensional solution of the
quantile equation (2).

Proof. Let us limit our consideration to the (k+ 1)-dimensional marginal prob-
ability distribution

F1...ki(x1, . . . , xk, xi).

Then the k-dimensional conditional quantile

q
(x0)
i|1...k(x1, . . . , xk), i = k + 1, n, (9)

will be the “big” quantile of the probability distribution with the corresponding
conditional distribution function Fi|1...k(xi | x1, . . . , xk). So this distribution has
a reproducible “big” conditional quantile. From the condition (7) and theorem
1 we conclude that for this distribution the “big” conditional quantile (9) is the
solution of the Pfaffian differential equation:

wi(x1, . . . , xk, xi) =

∣∣∣∣∣∣∣∣∣
dx1 dx2 . . . dxk dxi

1 q̇
(x0)
2|1 (x1) . . . q̇

(x 0)
k|1 (x1) q̇

(x0)
i|1 (x1)

. . . . . . . . . . . . . . .

q̇
(x0)
1|k (xk) q̇

(x0)
2|k (xk) . . . 1 q̇

(x0)
i|k (xk)

∣∣∣∣∣∣∣∣∣ = 0,
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that is

wi(x1, . . . , xk, q
(x0)
i|...k(x1, . . . , xk)) ≡ 0, i = k + 1, n. (10)

Let us now consider the quantile equation for the initial distribution.

w(x1, . . . , xn) =

=

∣∣∣∣∣∣∣∣∣
dx1 . . . dxk . . . dxn−1 dxn

1 . . . q̇
(x 0)
k|1 (x1) . . . q̇

(x 0)
n−1|1(x1) q̇

(x 0)
n|1 (x1)

. . . . . . . . . . . . . . . . . .

q̇
(x 0)
1|n−1(xn−1) . . . q̇

(x 0)
i|n−1(xn−1) . . . 1 q̇

(x 0)
n|n−1(xn−1)

∣∣∣∣∣∣∣∣∣ = 0.

We can apply Lemma 1 to expand the left part of the equation:

w(x1, . . . , xn) =

=
A(dxk+1)

S
· wk+1(x1, . . . , xk, xk+1) + . . .+

A(dxn)

S
· wn(x1, . . . , xk, xn).

Now, using (10), we get:

w(x1, . . . , xk, q
(x0)
k+1|1...k(x1, . . . , xk), . . . , q

(x0)
n|1...k(x1, . . . , xk)) ≡ 0.

Therefore, the surface (8) is an integral manifold for the initial quantile equation
(2).

Note 1. If the conditions of the theorem are satisfied, the quantile equation
(2) has a solution of dimension k. Therefore the maximum possible integral
manifold dimension for the equation is not less than k. And, consequently, the
Darboux class of the 1-form ω is less or equal to 2(n− k)− 1.
When the Darboux class of the quantile equation is equal to 2(n − k) − 1, the
surface (8) is the integral manifold of (2) of maximum possible dimension, going
through the point x0.

Note 2. If we add to (6) the following condition

q
(x0)
n|1...n−1(x1, . . . , xk, q

(x0)
k+1|1...k(x1, . . . , xk), . . . , q

(x0)
n−1|1...k(x1, . . . , xk)) ≡

≡ q(x
0)

n|1...k(x1, . . . , xk),

then the integral manifold (8) takes the form:{(
x1, . . . , xk, q

(x0)
k+1|1...k(x1, . . . , xk), . . . , q

(x0)
n−1|1...k(x1, . . . , xk),

q
(x0)
n|1...n−1

(
x1, . . . , xk, q

(x0)
k+1|1...k(x1, . . . , xk), . . . , q

(x0)
n−1|1...k(x1, . . . , xk)

))}
and it is a part of the “big” conditional quantile surface{(
x1, x2, . . . , xn−1, q

(x0)
n|1...n−1(x1, . . . , xn−1)

)}
.
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7 Example of the Distribution with an Intermediate Dar-
boux Class

To illustrate theorem 2, let us consider a mixture of two 5-dimensional Cauchy
distributions with density

f (x1, x2, x3, x4, x5) =
1

3
c(1) (x1, x2, x3, x4, x5) +

2

3
c(2) (x1, x2, x3, x4, x5) ,

where

c(1) =
12
√

15

π3
(
1 + x21 + 3x22 + 4x33 + 45

2 x
2
4 − 15x4x5 + 9

2 x
2
5

)3 ,
c(2) =

40
√

3

π3 (1 + x12 + 3x22 + 4x32 + 50x42 + 40x4x5 + 10x52) 3
.

We have the following quantile equation

ω =

∣∣∣∣∣∣∣∣∣∣∣

dx1 dx2 dx3 dx4 dx5
1 x1x2

1+(x1)2
x1x3

1+(x1)2
x1x4

1+(x1)2
x1x5

1+(x1)2
3x1x2

1+3(x2)2 1 3x2x3
1+3(x2)2

3x2x4
1+3(x2)2

3x2x5
1+3(x2)2

4x1x3
1+4(x3)2

4x2x3
1+4(x3)2 1 4x3x4

1+4(x3)2
4x3x5

1+4(x3)2

10x1x4
1+10(x4)2

10x2x4
1+10(x4)2

10x3x4
1+10(x4)2 1 q̇

(x4,x5)
5|4 (x4)

∣∣∣∣∣∣∣∣∣∣∣
= 0, (11)

where

q̇
(x4,x5)
5|4 (x4) = A/B;

A = (1 + 10x24)−1 ·
(

2
√

10 (−1 + 5x4x5)
(
2 + 45x24 − 30x4x5 + 9x25

)3/2
+

+5 (1 + 6x4x5)
(
1 + 10

(
5x24 + 4x4x5 + x25

))3/2)
;

B =
√

10
(
2 + 45x24 − 30x4x5 + 9x25

)3/2
+ 3

(
1 + 10

(
5x24 + 4x4x5 + x25

))3/2
.

Now let us calculate the Darboux class of the form ω to determine the maximum
dimension of the solution of the quantile equation. The calculations show that

dω 6= 0; dω ∧ ω 6= 0 almost surely in R5; dω ∧ dω ≡ 0.

So the Darboux class of the form ω is almost surely equal to 3 and the maximum
dimension of the solution of the quantile equation (11) is also almost surely equal
to 3.
The integral manifold of the maximum possible dimension, going through the
point x ◦ = (x◦1, . . . , x

◦
5) is given by the equalities

x4 = x◦4

√
1 + x21 + 3x22 + 4x23

1 + (x◦1)2 + 3(x◦2)2 + 4(x◦3)2
; x5 = x◦5

√
1 + x21 + 3x22 + 4x23

1 + (x◦1)2 + 3(x◦2)2 + 4(x◦3)2
,

which exactly match the two 3-dimensional conditional quantiles going through

x ◦: q̇
(x◦)
4|123 (x1, x2) and q̇

(x◦)
5|123 (x1, x2). That is the solution is

S(x ◦) =
{(

x1, x2, x3, q
(x◦)
4|123 (x1, x2, x3) , q

(x◦)
5|123 (x1, x2, x3)

)}
.

Information Technology and Nanotechnology (ITNT-2016) 778



Data Science Shatskikh S., Melkumova L...

Finally it is easy to verify that the 3-dimensional conditional quantiles satisfy to
the quantile reproducibility property. So, according to theorem 2, S(x ◦) should
be the solution of the quantile equation. Since the Darboux class of the form ω
is equal to 3, then, as it is stated in note 1, this is the solution of the maximum
possible dimension.
It is also easy to show, that the condition of note 2 is satisfied, so S(x ◦) is a
part of the “big” conditional quantile surface

S(x ◦) ⊆
{(
x1, x2, x3, x4, q

(x◦)
5|1234 (x1, x2, x3, x4)

)}
.

8 Statistical Application of Quantile Reproducibility

The theorem 1 talks on how to obtain the n−1-dimensional quantile from a set
of 1-dimensional quantile derivatives, which obviously can be calculated from
bivariate marginal densities of the distribution. This logically leads to an idea
to try to build a statistical estimate of the “big” conditional quantile of the
distribution from a number of estimates of its bivariate densities. The outline
of the algorithm would be as follows:

• First estimate 1-dimensional quantiles of the distribution and their deriva-
tives from a number of bivariate observations (see for example [2]).

• Then using these quantile derivative estimates build the Pfaffian quantile
equation 2 so that it’s completely integrable and its solution approximates
the “big” conditional quantile.

• Solve the quantile equation numerically and obtain the n-dimensional
quantile estimate.

Obviously for this algorithm one only needs a set of 2-dimensional observations
all of which can be made independently. With the direct approach to estimate
the n− 1-dimensional qunatile one would need to observe the entire vector of n
dimensions.
Now let us roughly compare the number of observations required to build the n−
1-dimensional quantile estimate when using the traditional direct approach and
the algorithm described above. For convenience we will assume that the quantile
and the quantile derivative estimation in both cases is done by first estimating
the corresponding distribution densities and deriving conditional densities from
the estimates.
With the traditional approach we consider a sample of observations{

(x
(1)
1 , . . . , x(1)n ), . . . , (x

(rn)
1 , . . . , x(rn)n )

}
for a random vector X = (X1, . . . , Xn) with the density f1...n(x1, . . . , xn). From

the observations we construct the density estimate f̂1...n(x1, . . . , xn).
To simplify calculations we’ll suppose that the histogram method is used. For
each variable Xi we divide the sample range into m intervals. This way we get
mn n-dimensional parallelepipeds. If, in order to get a good estimate in each
parallelepiped we need k observations, then the total amount of observations
required to estimate the density of X would be rn = k ·mn.

Information Technology and Nanotechnology (ITNT-2016) 779



Data Science Shatskikh S., Melkumova L...

If we use the algorithm proposed above we don’t need to estimate the n-variate
density f1...n(x1, . . . , xn). Instead we construct estimates for the marginal den-
sities fij(xi, xj), i 6= j, i, j = 1, n, using the observations{

(x
(1)
i , x

(1)
j ), . . . , (x

(r2)
i , x

(r2)
j )

}
.

If again for a good estimate we need k observations in each of the rectangles, then
each of the density estimates f̂ij(xi, xj) will require r2 = km2 observations. And
the total number of observations required to estimate all the bivariate densities
equals

sn = r2 ·
n · (n− 1)

2
= km2 · n · (n− 1)

2
.

It’s clear that for n ≥ 3

lim
m→∞

rn
sn

=∞,

which means that the overall number of observations required to construct a
n-dimensional quantile when n is relatively big would be much less in case if
the proposed algorithm is used.
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