
Data Science

Information Technology and Nanotechnology (ITNT-2016) 813

METHOD TO ASSESS RELIABILITY OF COMPLEX

SOFTWARE FUNCTIONING

A.N. Kovartsev, D.A. Popova-Kovartseva

Samara National Research University, Samara, Russia

Abstract. It has been established that the software reliability concept has many

specific features and differs significantly from the concept of reliability of tech-

nical systems. This greatly complicates the task of assessing overall reliability

of a complex software product. The paper introduces a new reliability indica-

tor—average reliability—as well as a method to assess average reliability of a

complex software system based on known characteristics of its modules. The

introduced approach is theoretically justified.

Keywords: software reliability, unreliability, execution route, software module.

Citation: Kovartsev AN, Popova-Kovartseva DA. Method to assess reliability

of complex software functioning. CEUR Workshop Proceedings, 2016; 1638:

813-819. DOI: 10.18287/1613-0073-2016-1638-813-819

Introduction

Reliability is an important and natural prerequisite for modern hardware and software

suites (HSSs). Nowadays, technical devices and systems are highly reliable. For ex-

ample, in [1], it is shown that the probability of computer failure in the TU-324 flight

navigation system is 1010 , which meets modern requirements for fail-free perfor-

mance of equipment used aboard space- and aircrafts. As for mathematical methods

of assessment of HSS software reliability, the situation is not quite satisfactory.

For a long time, general attention was paid directly to programming techniques, and

problems of testing and assessment of software reliability were considered ‘necessary

evil’. Only practical use could reveal software failures. In the late 1990s, the attitude

toward assessment of software reliability started to change due to a significant in-

crease in complexity of software and understanding that high reliability of an HSS

could be achieved only by fault-free operation of both its hard- and software.

In ISO 9126:1991 [2], reliability is named one of the main characteristics of software

quality.

Modern software reliability models, both analytical and empirical, either explicitly or

implicitly use the mathematical apparatus of the technical systems reliability theory,

i.e. they view the general system reliability concepts as dependent on time, which is

incorrect in case of software.

Data Science Kovartsev AN, Popova-Kovartseva DA…

Information Technology and Nanotechnology (ITNT-2016) 814

1 Software functioning reliability concept

The problem of software reliability has at least two aspects: assurance and measure-

ment (assessment) of software reliability. Almost all existing literature deals with the

first aspect, whereas not enough attention is paid to the problem of measurement of

software reliability.

In [3], reliability is defined as ‘the probability that software will not cause the failure

of a system for a specified time’. Then it is stated that software failure is a subjective

notion: one and the same program would suit one user, but would not another one.

Moreover, software failures impact the end result differently: some lead to a catastro-

phe, others simply to orthography mistakes displayed on the screen. The introduced

software reliability definition uses the concept of time factor, borrowed from termi-

nology related to technical devices reliability.

The general postulate of the technical devices reliability theory states that the failure

rate of an element depends on operation time, which makes no sense in relation to

software reliability.

In software, failures occur with specific, clearly defined combinations of input data.

Countless software starts with one or a limited number of sets of input data that do not

cause the software to fail will not cause a failure regardless of the operation time.

Moreover, reliability of software modules can only increase over time as errors are

being diagnosed and fixed. Theoretically, there can occur a situation when testing of a

software module does not reveal errors anymore.

This renders concepts of operating time to failure and failure probability for a given

period completely useless for the purposes of programming.

The classic reliability theory uses an axiomatic assumption that a probability of fail-

ure 0p , albeit small but higher than zero, always exists for any technical device due

to design errors or operational wear of the device. This hypothesis is proven experi-

mentally. However, software is not subject to wear or damage; therefore, lack of

software reliability can be caused exclusively by programming errors made at the

design stage. At the same time, an unlimited number of simple programmes with zero

probability of failure can be developed. This renders the entire apparatus of the classic

reliability theory useless for practical application.

The most general definition of software reliability is proposed by B. Meyer in [4],

where he defines reliability as ‘the ability of software to provide reasonable results

under any possible circumstances and, in particular, under abnormal conditions’.

Then, unreliability may be viewed as ratio of cardinality of error situations
E to

cardinality of input data
In (InE ). In connection with computers, this is ratio

between the number of combinations of software input data that cause errors to the

general number of combinations of input data. In this case, unreliability can be calcu-

lated according to the following formula: ./ InEq 

However, the number of input data combinations for software modules is generally so

high that it is virtually impossible to account for every combination for a modern

computer. Positive results have nowadays been acquired for relatively simple soft-

ware modules with just a few input parameters. For some modules, their correctness

Data Science Kovartsev AN, Popova-Kovartseva DA…

Information Technology and Nanotechnology (ITNT-2016) 815

[4], i.e. 0q , can be proven. In other cases, q can be established experimentally [4,

5].

Input data for modern complex software can include hundreds and thousands of vari-

ables. That renders direct testing methods ineffective and virtually impossible as the

task of software testing becomes as complicated as the task of global optimization [6,

7, 8].

It looks natural to use known characteristics of software components to assess relia-

bility of complex software, just like for technical systems. However, this approach

also leads to unexpected results.

First, no matter how complex software structure is, software elements (modules) are

always connected (reliability-wise) sequentially.

Second, software reliability depends not only on reliability of its modules but also on

correctness of organisation of software functioning logic [9, 10].

Third, software reliability cannot be calculated directly based on reliability of its

components (software modules).

Let us review the last argument in detail.

2 Challenges in assessment of a complex software system’s

reliability

Let us assume we know reliability characteristics of all modules of a software prod-

uct. Let iq be unreliability of i-th module Out
i

In
ii YXA : calculated with account of

all possible applications of the module, i.e. over a significantly wide range of input

data, i
In

In
in

In
i

In
i

In
i i

xxxX ),...,,(21
, where i

In is the range of values of the input data

vector of the i-th module.

Let us assume there are no logic errors in organisation of software functioning logic

(this problem needs to be reviewed separately, see [5]).

Let us assume the software system has L execution routes [8]. Let us define every

route as
kjjjj iiiM ...

10
 , where

kj
i is number of a software module of the system.

Let us assume every i-th object on the j-th route is called ijm~ times on average.

Unreliability of the i-th module on the j-th route for ijm~ calls can therefore be as-

sessed as:

ij

m

iij QqmQ ij 
~

)1(1)~(. (1)

It is obvious that, should an error occur in any module on the route, the entire route

may be deemed a failure. Therefore, route unreliability can be assessed as:





k

j

j

i
ijM QQ

1

)1(1 . (2)

Data Science Kovartsev AN, Popova-Kovartseva DA…

Information Technology and Nanotechnology (ITNT-2016) 816

Let us assume every route is executed with probability jr , and  1jr is true. There-

fore, unreliability of the software system may be assessed as:





L

j
MjPS j

QrQ
1

. (3)

The formula (3) is true if assessments of unreliability of software system modules are

constant for various software. However, this is not the case.

As an example, let us review a programme for thermogasdynamical calculation of a

two-shaft turbojet engine (see Fig. 1).

Fig. 1. Programme for thermogasdynamical calculation of a two-shaft turbojet engine

This programme is rather simple and employs only one route. However, functional

nonlinear transformations that occur in every module cause changes in laws of distri-

bution of in- and output data (input data for the next module) for every single module.

Figures 2a–2f show ranges of change of input data for calculation of turbojet engine

and its components (high pressure compressor, combustion chamber, high and low

pressure turbines, and nozzle diaphragm).

a) b) c)

d) e) f)

Fig. 2. Ranges of change of input data for calculation of a turbojet engine and its components

Data Science Kovartsev AN, Popova-Kovartseva DA…

Information Technology and Nanotechnology (ITNT-2016) 817

As is seen from the figures, the laws of distribution of input data have significantly

transformed for every module, up to the point of loss of scale. At the same time, input

data were supplied uniformly for each module during autonomous testing. This could

lead to over- or underestimation of reliability of software modules the system is com-

posed of and distort the entire assessment of software reliability.

This means software reliability assessment should use probability distribution for

input data for every module used in the software and, apparently, account for particu-

lar characteristics of all software tasks.

Let us review influence of the above factors on changes in assessment of software

modules’ reliability.

3 A method to assess reliability of a complex software system

Let us assume there is a module that only has one input parameter x, and the module

has passed a series of tests (of N tests) without errors; also,],[bax . From this, it

may be concluded that)1/(1  Nq and)1/()()( NabV E . Let us assume then

that input parameter value range],[],[badcx  of the module has changed during

its use as part of software; at the same time, the law of distribution has not changed.

Therefore, the final unreliability of the module, with account to probability

]},[{ dcP E  , may be assessed as ,
)()(

]},[{
)(~ q

ab

V

ab

cd

cd

V
dcP

cd

V
q EE

E
E 



















 i.e.

the unreliability characteristic does not change its value if the uniform law of distribu-

tion of parameter x is observed.

For simplicity, let 0са  . Let us assume next that over an intercept d] [0, , x fol-

lows a non-uniform, quasiexponential distribution with the distribution density func-

tion
xeKxf )(, where

de
K




1

1 . Let )(EV . Unreliability of the module

may be defined using equation)1(
1

]},0[{)(~ 




 


  e

e

e

b

d
dxeKdPxq

d

xx

x

x and

depends on where the error situations range lies. The unreliability is not equal to value

q found during the autonomous testing (Fig. 3).

Fig. 3. Dependence of unreliability of the module on parameter x

Data Science Kovartsev AN, Popova-Kovartseva DA…

Information Technology and Nanotechnology (ITNT-2016) 818

What should be considered a characteristic of unreliability of the module then?

Let us assume the error situations range lies randomly at any spot of the intercept [0,

d] and let us calculate the average value)(~ xq ,

b

e
e

d

Ke

b

d
dxe

d

eKdP
dx

d
xqq d

d
x

d

m
























)1(

)1(
)1()1(]},0[{1

)(~

00

 (4)

Characteristic mq does not depend on the parameter x and is only defined by the size

of the error range  and the exponential distribution law parameter  .

As calculations show (see table below), significant changes of values  (distribution

non-uniformity degrees) lead to virtually no changes of the value mq . Moreover,

qqm  . In this example, 1=b 0,2,=d ,00001.0q . For significant non-uniformity

10 , the condition
mqxq )(is observed on relatively small intercepts of the input

parameter definition range, and in other cases,
mqxq )(is observed. If  is small,

then mqxq )(max is true.

Table. Influence of non-uniformity of input data distribution

law on mq

 mq max q(x) x

0.1 9.99999E-06 1.01E-05 0.1

1 9.99995E-06 1.1E-05 0.0975

10 9.9995E-06 2.31E-05 0.0825

100 9.995E-06 0.0002 0.0275

1000 9.95017E-06 0.00199 0.005

If qqm  is true for any distribution law, q can be interpreted as the average and ex-

pected assessment of module unreliability and used for calculation of software relia-

bility by interpreting PSQ as the average expected value of unreliability of software

as a whole. However, this result needs yet to be extended to the multidimensional

case.

For a random distribution law)(xF of input data of a software module with distribu-

tion density)(x , the following general regularities may be revealed.

Let us define a normalisation condition using the following equations:

 
d

dxxK

0

1)(or 
d

dxxK

0

)(/1 .

Next,

)).()(]}(,0[{)(]},0[{)(~ xFxFdKPdxxKdPxq
x

x

 


If 0 , then

.)(]},0[{
))()((

lim]},0[{)(~lim
00








xdKP

xFxF
dKPxq

Data Science Kovartsev AN, Popova-Kovartseva DA…

Information Technology and Nanotechnology (ITNT-2016) 819

Then,

.)(
]},0[{1

)(~

00

q
bdb

d
dxx

d

KdP
dx

d
xqq

dd

m 








  (5)

Therefore, the average unreliability of the software module (5), in the limit of 0 ,

coincides with the unreliability assessment calculated for the uniform input data dis-

tribution law.

Conclusion

It may be concluded that assessment of software reliability differs significantly from

the analogous task for technical systems. At the same time, the averaged characteristic

of software reliability may be calculated using known assessments of reliability of

software modules the product consists of. Testing of a software component can be

carried out using a standard procedure of stochastic testing with the uniform input

data distribution law.

The paper is prepared with state support from the Ministry of Education and Science

of Russia as part of the Programme for competitive growth of the Samara State Aero-

space University among leading world science and education centres for 2013–2020.

References

1. Avakyan АА, Iskandarov RD, Novikov NN et al. The concept of building a highly reliable

calculators for aviation and rocketry. Reliability and quality 2001, Proceedings of the In-

ternational Symposium, Penza, 2001: 33-37. [in Russian]

2. ISO 9126:1991. Information technology. Software product evaluation. Quality characteris-

tics and guidelines for their use. 186 p. [in Russian]

3. Myers, G. Reliability Software. Moscow: Mir, 1980; 360 p. [in Russian]

4. Meyer B, Baudoin C. Programming methods. Vol. 2 Moscow: Mir, 1982; 368 p. [in Rus-

sian]

5. Kovartsev АN. Automate development and testing of software. Samara: Samara Aero-

space University, 1999; 150 p. [in Russian]

6. Kovartsev AN, Popova-Kovartseva DA, Gorshkova EE. Software testing based on global

search of several variables functions discontinuity. CEUR ITNT 2015 Information Tech-

nology and Nanotechnology, Samara, 2015: 389-396.

7. Kovartsev А N, Popova-Kovartseva DA. On efficiency of parallel algorithms for global

optimization of functions of several variables. Computer Optics, 2011; 35(2): 256-261. [in

Russian]

8. Kovartsev АN. A deterministic evolutionary algorithm for the global optimization of

morse cluster. Computer Optics, 2014; 39(2): 234-240. [in Russian]

9. Lipaev VV. Reliable software. Moscow: SINTEG, 1998; 232 p. [in Russian]

10. Kovartsev АN. An efficient algorithm for testing the truth of assertions for real numbers

expressed in relational signatures. Computer Optics, 2014; 38(3): 550-554. [in Russian]

http://ceur-ws.org/Vol-1490/paper46.pdf
http://ceur-ws.org/Vol-1490/paper46.pdf
http://agora.guru.ru/display.php?conf=itnt-2015&page=item005&PHPSESSID=j3ne477mb6153be0uh9oegd1u4

