
Data Science 

Information Technology and Nanotechnology (ITNT-2016)                                                    813 

METHOD TO ASSESS RELIABILITY OF COMPLEX 

SOFTWARE FUNCTIONING 

A.N. Kovartsev, D.A. Popova-Kovartseva 

Samara National Research University, Samara, Russia  

Abstract. It has been established that the software reliability concept has many 

specific features and differs significantly from the concept of reliability of tech-

nical systems. This greatly complicates the task of assessing overall reliability 

of a complex software product. The paper introduces a new reliability indica-

tor—average reliability—as well as a method to assess average reliability of a 

complex software system based on known characteristics of its modules. The 

introduced approach is theoretically justified. 
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Introduction  

Reliability is an important and natural prerequisite for modern hardware and software 

suites (HSSs). Nowadays, technical devices and systems are highly reliable. For ex-

ample, in [1], it is shown that the probability of computer failure in the TU-324 flight 

navigation system is 1010 , which meets modern requirements for fail-free perfor-

mance of equipment used aboard space- and aircrafts. As for mathematical methods 

of assessment of HSS software reliability, the situation is not quite satisfactory. 

For a long time, general attention was paid directly to programming techniques, and 

problems of testing and assessment of software reliability were considered ‘necessary 

evil’. Only practical use could reveal software failures. In the late 1990s, the attitude 

toward assessment of software reliability started to change due to a significant in-

crease in complexity of software and understanding that high reliability of an HSS 

could be achieved only by fault-free operation of both its hard- and software. 

In ISO 9126:1991 [2], reliability is named one of the main characteristics of software 

quality. 

Modern software reliability models, both analytical and empirical, either explicitly or 

implicitly use the mathematical apparatus of the technical systems reliability theory, 

i.e. they view the general system reliability concepts as dependent on time, which is 

incorrect in case of software. 
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1 Software functioning reliability concept  

The problem of software reliability has at least two aspects: assurance and measure-

ment (assessment) of software reliability. Almost all existing literature deals with the 

first aspect, whereas not enough attention is paid to the problem of measurement of 

software reliability. 

In [3], reliability is defined as ‘the probability that software will not cause the failure 

of a system for a specified time’. Then it is stated that software failure is a subjective 

notion: one and the same program would suit one user, but would not another one. 

Moreover, software failures impact the end result differently: some lead to a catastro-

phe, others simply to orthography mistakes displayed on the screen. The introduced 

software reliability definition uses the concept of time factor, borrowed from termi-

nology related to technical devices reliability.  

The general postulate of the technical devices reliability theory states that the failure 

rate of an element depends on operation time, which makes no sense in relation to 

software reliability. 

In software, failures occur with specific, clearly defined combinations of input data. 

Countless software starts with one or a limited number of sets of input data that do not 

cause the software to fail will not cause a failure regardless of the operation time. 

Moreover, reliability of software modules can only increase over time as errors are 

being diagnosed and fixed. Theoretically, there can occur a situation when testing of a 

software module does not reveal errors anymore. 

This renders concepts of operating time to failure and failure probability for a given 

period completely useless for the purposes of programming. 

The classic reliability theory uses an axiomatic assumption that a probability of fail-

ure 0p , albeit small but higher than zero, always exists for any technical device due 

to design errors or operational wear of the device. This hypothesis is proven experi-

mentally. However, software is not subject to wear or damage; therefore, lack of 

software reliability can be caused exclusively by programming errors made at the 

design stage. At the same time, an unlimited number of simple programmes with zero 

probability of failure can be developed. This renders the entire apparatus of the classic 

reliability theory useless for practical application. 

The most general definition of software reliability is proposed by B. Meyer in [4], 

where he defines reliability as ‘the ability of software to provide reasonable results 

under any possible circumstances and, in particular, under abnormal conditions’. 

Then, unreliability may be viewed as ratio of cardinality of error situations 
E  to 

cardinality of input data 
In  ( InE  ). In connection with computers, this is ratio 

between the number of combinations of software input data that cause errors to the 

general number of combinations of input data. In this case, unreliability can be calcu-

lated according to the following formula: ./ InEq   

However, the number of input data combinations for software modules is generally so 

high that it is virtually impossible to account for every combination for a modern 

computer. Positive results have nowadays been acquired for relatively simple soft-

ware modules with just a few input parameters. For some modules, their correctness 
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[4], i.e. 0q , can be proven. In other cases, q  can be established experimentally [4, 

5]. 

Input data for modern complex software can include hundreds and thousands of vari-

ables. That renders direct testing methods ineffective and virtually impossible as the 

task of software testing becomes as complicated as the task of global optimization [6, 

7, 8]. 

It looks natural to use known characteristics of software components to assess relia-

bility of complex software, just like for technical systems. However, this approach 

also leads to unexpected results. 

First, no matter how complex software structure is, software elements (modules) are 

always connected (reliability-wise) sequentially. 

Second, software reliability depends not only on reliability of its modules but also on 

correctness of organisation of software functioning logic [9, 10]. 

Third, software reliability cannot be calculated directly based on reliability of its 

components (software modules). 

Let us review the last argument in detail. 

2 Challenges in assessment of a complex software system’s 

reliability 

Let us assume we know reliability characteristics of all modules of a software prod-

uct. Let iq  be unreliability of i-th module Out
i

In
ii YXA :  calculated with account of 

all possible applications of the module, i.e. over a significantly wide range of input 

data, i
In

In
in

In
i

In
i

In
i i

xxxX  ),...,,( 21
, where i

In  is the range of values of the input data 

vector of the i-th module. 

Let us assume there are no logic errors in organisation of software functioning logic 

(this problem needs to be reviewed separately, see [5]). 

Let us assume the software system has L execution routes [8]. Let us define every 

route as 
kjjjj iiiM ...

10
 , where 

kj
i  is number of a software module of the system.  

Let us assume every i-th object on the j-th route is called ijm~  times on average. 

Unreliability of the i-th module on the j-th route for ijm~  calls can therefore be as-

sessed as: 

ij

m

iij QqmQ ij 
~

)1(1)~( .  (1) 

It is obvious that, should an error occur in any module on the route, the entire route 

may be deemed a failure. Therefore, route unreliability can be assessed as: 


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Let us assume every route is executed with probability jr , and  1jr  is true. There-

fore, unreliability of the software system may be assessed as: 





L

j
MjPS j

QrQ
1

.  (3) 

The formula (3) is true if assessments of unreliability of software system modules are 

constant for various software. However, this is not the case. 

As an example, let us review a programme for thermogasdynamical calculation of a 

two-shaft turbojet engine (see Fig. 1). 

 

Fig. 1. Programme for thermogasdynamical calculation of a two-shaft turbojet engine 

This programme is rather simple and employs only one route. However, functional 

nonlinear transformations that occur in every module cause changes in laws of distri-

bution of in- and output data (input data for the next module) for every single module.  

Figures 2a–2f show ranges of change of input data for calculation of turbojet engine 

and its components (high pressure compressor, combustion chamber, high and low 

pressure turbines, and nozzle diaphragm). 

a) b) c)  

 

d) e) f)  

Fig. 2. Ranges of change of input data for calculation of a turbojet engine and its components 
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As is seen from the figures, the laws of distribution of input data have significantly 

transformed for every module, up to the point of loss of scale. At the same time, input 

data were supplied uniformly for each module during autonomous testing. This could 

lead to over- or underestimation of reliability of software modules the system is com-

posed of and distort the entire assessment of software reliability. 

This means software reliability assessment should use probability distribution for 

input data for every module used in the software and, apparently, account for particu-

lar characteristics of all software tasks.  

Let us review influence of the above factors on changes in assessment of software 

modules’ reliability. 

3 A method to assess reliability of a complex software system 

Let us assume there is a module that only has one input parameter x, and the module 

has passed a series of tests (of N tests) without errors; also, ],[ bax . From this, it 

may be concluded that )1/(1  Nq  and )1/()()(  NabV E . Let us assume then 

that input parameter value range ],[],[ badcx   of the module has changed during 

its use as part of software; at the same time, the law of distribution has not changed. 

Therefore, the final unreliability of the module, with account to probability 

]},[{ dcP E  , may be assessed as ,
)()(
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the unreliability characteristic does not change its value if the uniform law of distribu-

tion of parameter x is observed. 

For simplicity, let 0са  . Let us assume next that over an intercept  d] [0, , x fol-

lows a non-uniform, quasiexponential distribution with the distribution density func-

tion 
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depends on where the error situations range lies. The unreliability is not equal to value 

q found during the autonomous testing (Fig. 3). 

 

Fig. 3. Dependence of unreliability of the module on parameter x 
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What should be considered a characteristic of unreliability of the module then?  

Let us assume the error situations range lies randomly at any spot of the intercept [0, 

d] and let us calculate the average value )(~ xq , 
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Characteristic mq  does not depend on the parameter x and is only defined by the size 

of the error range   and the exponential distribution law parameter  .  

As calculations show (see table below), significant changes of values   (distribution 

non-uniformity degrees) lead to virtually no changes of the value mq . Moreover, 

qqm  . In this example, 1=b  0,2,=d ,00001.0q . For significant non-uniformity 

10 , the condition 
mqxq )(  is observed on relatively small intercepts of the input 

parameter definition range, and in other cases, 
mqxq )(  is observed. If   is small, 

then mqxq )(max  is true. 

Table. Influence of non-uniformity of input data distribution  

law on mq  

  mq  max q(x) x  

0.1 9.99999E-06 1.01E-05 0.1 

1 9.99995E-06 1.1E-05 0.0975 

10 9.9995E-06 2.31E-05 0.0825 

100 9.995E-06 0.0002 0.0275 

1000 9.95017E-06 0.00199 0.005 

If qqm   is true for any distribution law, q  can be interpreted as the average and ex-

pected assessment of module unreliability and used for calculation of software relia-

bility by interpreting PSQ  as the average expected value of unreliability of software 

as a whole. However, this result needs yet to be extended to the multidimensional 

case. 

For a random distribution law )(xF  of input data of a software module with distribu-

tion density )(x , the following general regularities may be revealed. 

Let us define a normalisation condition using the following equations: 
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Then,  
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Therefore, the average unreliability of the software module (5), in the limit of 0 , 

coincides with the unreliability assessment calculated for the uniform input data dis-

tribution law. 

Conclusion 

It may be concluded that assessment of software reliability differs significantly from 

the analogous task for technical systems. At the same time, the averaged characteristic 

of software reliability may be calculated using known assessments of reliability of 

software modules the product consists of. Testing of a software component can be 

carried out using a standard procedure of stochastic testing with the uniform input 

data distribution law.  

The paper is prepared with state support from the Ministry of Education and Science 

of Russia as part of the Programme for competitive growth of the Samara State Aero-

space University among leading world science and education centres for 2013–2020. 
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