
Data Science

Information Technology and Nanotechnology (ITNT-2016) 820

TERNARY TREES USAGE FOR COMPUTATIONAL

EXPERIMENT DATA STORAGE

A.N. Kovartsev
1
, D.A. Popova-Kovartseva

1
, E.E. Gorshkova

1

1 Samara National Research University, Samara, Russia

Abstract. Repository for a great number of the suspected function runs must of-

ten be organized during the realization of numerical global optimization method

or program modules testing methods. In this connection the problem of a fast-

access search of required element arises. A way to solve the problem can be

found through the organization of an effective data repository, which allows for

rapid implementation of the search and insertion of new elements. The binary

and ternary trees storage options are considered in the paper, their comparison

is made, recommendations for use of analyzed data models are reported.

Keywords: binary trees, ternary trees, data structures, global optimization.

Citation: Kovartsev AN, Popova-Kovartseva DA, Gorshkova ЕЕ. Ternary trees

usage for computational experiment data storage. CEUR Workshop Proceed-

ings, 2016; 1638: 820-827. DOI: 10.18287/1613-0073-2016-1638-820-827

Introduction

Considerable volume of function "runs" must be stored during application of numeri-

cal global optimization method (GO) [1, 2] or program modules testing methods [3,

4]. The main requirement for GO algorithms and program modules testing methods is

the speed of the algorithm. Let us assume that the computation time of function)(xf

is sufficiently large. This situation is typical for solving optimization problems in

technical systems design process, such as gas turbine engines, aircraft, etc. Some tests

in the known GO algorithms are repeated in increments (for example, in bisection

method or its modified version [5]) and that leads to redundant computation of)(xf .

A way to solve this problem can be found through the organization of an effective

data repository allowing for rapid implementation of the search and insertion opera-

tions of new elements.

1 Disadvantages of traditional binary trees usage

Let us agree, that by the test we mean function)(xf calculation at the point speci-

fied by optimization algorithm or function testing algorithm. Optimization methods

Data Science Kovartsev AN, Popova-Kovartseva DA. et al…

Information Technology and Nanotechnology (ITNT-2016) 821

complexity is the total number of algorithm steps [6]. However, taking into account

the high advanced computers performance, by optimization algorithms complexity it's

more accurate to mean the total number of calls to the optimizable function, since the

algorithm steps can have different complexity, and each function call takes the same

amount of time for any algorithm. On the other hand, the number of function calls is

independent of the computer processing power that allows comparing algorithms to

be implemented on computers with different performance.

At the same time, each function call may require significant computing time depend-

ing on the complexity of the test function.

This article deals with the problem of data repository organizing for GO algorithm

based on the modified bisection method (BM) [5]. In the BM algorithm the search

space partitioning strategy may be defined as non-uniform space division with the use

of regular structures (see [1]). However, it is necessary to compute the function at the

same points of independent variables set.

In order to avoid repeated calculations, it is expedient to store the point coordinates

and function values at them in a separate data repository. Thus the data array may

have considerable size. In this case there is the problem of finding an element in the

array. For example, the average complexity of sequential search in an unordered and

in an ordered array is O(n) [7].

Practically, binary trees (b-trees) are generally used to increase the efficiency of the

search algorithm [8, 9]. Binary search for balanced binary trees [10] has an average

complexity proportional to)(log 2 nO and depends on the depth of a binary tree.

By the depth of a binary tree is generally understood [10] the number of nodes on the

longest path from the root of the tree to its leaves. However, usage of binary trees for

data storing at the test points of the tested or optimized function has its own aspects.

In particular, a certain procedure of data entry or additional sorting of data is required

to build an optimal balanced binary tree even for regular grids. For the irregular grids

of experiment data sorting is essential.

Figure 2 shows the balanced binary tree built for the regular grid (see. Fig. 1) using

one of the rational methods of construction of the balanced binary tree.

Fig. 1. Strategy of the balanced binary tree building on a regular grid

In addition, computational experiment must comply with the sequence shown in Fig-

ure 1. The calculations start from a point with coordinates (2, 2). A binary tree shown

in Figure 2 corresponds to this plan.

Data Science Kovartsev AN, Popova-Kovartseva DA. et al…

Information Technology and Nanotechnology (ITNT-2016) 822

However, the gradual detalization of the search area is peculiar for BM, and it starts

from a large sample spacing with a gradual decrease in specific fragments in the

searching range. The range of search "densifies" nonuniformly here. In this case, it's

impractical to achieve the balance of the binary tree, and this leads to efficiency loss

of search algorithms. Figure 3 shows a binary tree corresponding to the experiment

shown in Figure 4.

Fig. 2. Balanced binary tree for 5*5 experiment grid

Fig. 3. Binary tree for BM

As can be seen from the figure binary tree becomes not balanced for irregular grid.

One way to improve the efficiency of the search algorithm is to use more complex

data structures, such as ternary trees (t-trees).

Fig. 4. Construction of the balanced binary tree

Data Science Kovartsev AN, Popova-Kovartseva DA. et al…

Information Technology and Nanotechnology (ITNT-2016) 823

2 Ternary trees

Two ordering relationships ("<" and "> =" or "<=" and ">") are used to build a binary

tree that allow to implement a procedure of binary division of the ordered set. Three

conditions are required for the ternary tree construction which allow to split an or-

dered set into three parts. As such, will be the following conditions "<", "=" and ">".

Points of the experiment will be organized by the following criterion yxz  , i.e.

by the sum of the experimental points coordinates. In general, points with coordinates

that correspond to the condition of equality, not often encountered; in this case, a

ternary tree is converted into binary. However, there is a fair amount of such points

for regular grids. Points that satisfy the condition of equality are located on the diago-

nals (constyx ) for 5 * 5 grid in figure 5.

Fig. 5. Construction of the ternary tree

The result is a t-tree, shown in Figure 6.

The comparison between an average efficiency of search for b- and t-trees for differ-

ent regular grids of partitioning the search space is of some interest.

Let n be a number of nodes of a regular grid for each coordinate, 2nN  - the total

number of grid nodes, k - the depth of a complete binary tree [10].

Fig. 6. Ternary tree for 5*5 experiment grid

A binary tree is "complete" if both subtrees of all nodes are "balanced", i.e. they have

approximately the same number of nodes [10].

The total number of nodes for a "complete" (balanced) b-tree can be calculated from

the formula [7] 12 
k .

Data Science Kovartsev AN, Popova-Kovartseva DA. et al…

Information Technology and Nanotechnology (ITNT-2016) 824

Suppose that the complete balanced tree is constructed for each regular grid, so that

the first few levels except the last one are completely filled with nodes. Basically, it is

impossible to build completely filled "balanced" trees for nn grid, because the

number of elements in the grid and in complete binary tree does not match.

For any number of elements (in this case the nn grid) the "complete" tree depth can

be calculated from the formula:

   
 









.,1log

,loglog,log

2

222

elseN

NNifN
k

On the assumption of equally probable binary tree filling with the information in the

grid nodes we calculate the average complexity of the search on the "complete" b-

tree. For a grid with the number of elements 2nN  , the elements of the "complete"

tree up to the depth 1k will be completely filled. k2 elements are located on each k

level of the binary tree. It is easy to show that for equally probable distribution of

nodes of a regular grid in a binary tree the average complexity of search can be calcu-

lated using the following formula:

).2)1((
1

)(2

2

k
knk

n
NB 

Unfortunately, "complete" balanced b-tree is generated only when the inclusion of

grid elements into a binary tree has a certain order. In general, the search process can

form linear structure with greater depth than the "complete" b-tree.

Knuth [11] has shown that, if all possible options of elements inclusion (N!) into the

binary tree are assumed to be equally probable, then the average depth of a binary

search is N and averagely N2log386.1
comparisons are required per search. Figure

7 shows graphs of average search complexity. It can be seen, that the average com-

plexity of the search of the "complete" binary tree is much smaller than in case of

arbitrary filling of b-tree with grid elements.

The ternary tree depth is almost the same as the dimension of the grid, as the tree

depth cannot be less than the number of nodes on the grid diagonal because of the

equality operation. It is much more difficult to calculate the average complexity of the

search T(N) for a ternary tree. Figure 7 shows a graph of behavior T(N) of the number

of grid elements resulted from the computing experiment for quasioptimal t-trees.

Fig. 7. Comparison of the average complexity of the search on the b and t trees

Data Science Kovartsev AN, Popova-Kovartseva DA. et al…

Information Technology and Nanotechnology (ITNT-2016) 825

As can be seen from the figure a ternary tree has disadvantages in the description of

the regular grid of the experiment in comparison with optimal binary tree. However, a

margin of free branches in the tree that can be filled with new grid nodes is very im-

portant in the nonlinear search space partitioning method when changing the sample

spacing of the search space. In this regard, the binary tree loses much to t-tree, since

b-tree branches are located at the last level of the tree.

The reservation availability for new experimental points occurs in the t-tree, which do

not increase the depth of search long enough. The latter happens because the opera-

tion of the equality "=" implements the partition of the grid points set into equivalence

classes. All classes are comparable to operations "<" and ">" and form "branches" of

equivalence.

Grid densifying in separate squares leads to the appearance of new branches, that

quickly find an empty place on a tree. The upper levels of binary trees tend to be al-

ready completed by this time and further development is possible only by increasing

the depth of the tree.

It is inappropriate to sort b-tree in order to improve its structure when the operations

of element inserting and searching for an item in the tree are made at the same time.

The fastest sorting algorithms require NN 2log operations to improve the tree struc-

ture [12]. In this case, the efficiency of the dichotomous search on balanced b-tree

will be lost due to the sort operations.

Thus, ternary tree can be used as the data model of experimental points placement

during software module testing.

3 The efficiency of the search algorithm in ternary tree

research

The efficiency of the search algorithm in ternary tree depends on the properties of the

test function. We used 6 test functions with different topologies in the computational

experiments and, therefore, different computational complexity in terms of solving

the problem of GO. The functions are different: from relatively simple rational func-

tions, more complex ravine functions, multiextremal functions (including discontinu-

ous functions) to ROOT standard test functions offered on the site [13].

Figure 8 shows the results of computational experiments of the efficiency of the

search algorithm in ternary tree research for the considered test functions. For clarity,

dependency graphs of the average search length of optimal "complete" binary tree and

evaluation of the same values for equally probable way of filling b-tree proposed by

Knuth [11] are shown below.

As can be seen from the figure, in most cases, the efficiency of the search on the t-tree

is comparable with the average complexity of the search at the optimal binary tree.

The latter is achieved due to the large number of ternary tree free connections, located

on the upper levels. In general, the average search length of t-tree has an acceptable

value for large volumes of stored data. In comparison it should be noted that t-tree

was discussed in unsorted form, while b-tree, for the same amount of information was

optimal and balanced. The latter means the high efficiency of the search on t-trees.

Data Science Kovartsev AN, Popova-Kovartseva DA. et al…

Information Technology and Nanotechnology (ITNT-2016) 826

If we consider the relative average search length (ratio of the average search length to

the total number of elements of the tree), then with increasing of the size of t-tree

search efficiency only increases (see Fig. 9).

Fig. 8. The efficiency of the search on the t-trees

Fig. 9. The relative efficiency of the search on the t-trees

Conclusion

In this article, we considered the problem of data repository organization and data

search algorithm on ternary trees, designed to serve the global optimization methods

and function tests that require processing of large volumes of information. Using of

ternary trees gives a number of advantages in comparison with traditional binary

trees, as it does not require to perform a sort operation or balance the tree in order to

improve the efficiency of the search on ternary trees, and the average complexity of

the search is comparable to the efficiency of search on the binary optimal balanced

tree.

Data Science Kovartsev AN, Popova-Kovartseva DA. et al…

Information Technology and Nanotechnology (ITNT-2016) 827

Acknowledgements

This work was supported by the state Ministry of Education and Science of the Rus-

sian Federation as part of the activities of the Program of competitiveness improving

of SSAU among the world's leading research and education centers for 2013-2020.

References

1. Kovartsev AN, Popova-Kovartseva DA. On efficiency of parallel algorithms for global op-

timization of functions of several variables. Computer Optics, 2011; 35(2): 256-261. [in

Russian]

2. Kovartsev АN. A deterministic evolutionary algorithm for the global optimization of

morse cluster. Computer Optics, 2014; 39(2): 234-240. [in Russian]

3. Kovartsev AN, Popova-Kovartseva DA, Abolmasov PV. Efficiency study of global paral-

lel optimization for multivariable function. Vestnik NNGU, 2013; 3(1): 252-261. [in

Russian]

4. Kovartsev АN. An efficient algorithm for testing the truth of assertions for real numbers

expressed in relational signatures. Computer Optics, 2014; 38(3): 550-554. [in Russian]

5. Kovartsev AN, Popova-Kovartseva DA, Gorshkova EE. Software testing based on global

search of several variables functions discontinuity. Proceedings of International Con-

ference Information Technology and Nanotechnology (ITNT-2015), 2015: 389-396.

6. Nemirovskij AS, Yudin DB. The complexity of the problems and the effectiveness of op-

timization methods. Moscow: Nauka, 1979; 384 p. [in Russian]

7. Makkonel J. Analysis of algorithms. Introductory course. Moscow: Tekhnosfera, 2002;

304 p. [in Russian]

8. Adamenko AN, Kuchukov AM. Logic programming and Visual Prolog. St. Petersburg: BHV-

Peterburg, 2003; 992 p. [in Russian]

9. Ivanov BN. Discrete mathematics. Algoritms and programs. Moscow: Laboratoriya bazovyh

znanij, 2001; 288 p. [in Russian]

10. Meyer B, Baldwin K. Programming methods. V. 2 (3). Moscow: Mir, 1982; 386 p.

11. Knuth D. Art of Computer Programming. Sorting and searching. V. 3. Moscow: Mir, 1978; 848 p.

12. Holl P. Computational structure. Introduction to nonnumerical programming. Moscow: Mir, 1978;

216 p.

13. Global optimization algorithms. Sourse: <http:www.r-tech.narod.ru/gtest/html>

