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Abstract. A heuristic approach to the verification of isomorphic graphs is de-

scribed in this work. The approach is a sequential verification of the graph 

characteristics which are invariants. The results of computational experiments 

are described. The aim of experiments is to determine which of the comparative 

sequences (for graph invariants values) are more efficient for graph isomor-

phism verification. 
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Introduction 

An isomorphism between two undirected and unweighted graphs is a bijection be-

tween the vertex sets of these graphs such that two vertices of the first graph are adja-

cent if and only if corresponding vertices of the second graph are adjacent [1]. In case 

of isomorphism between two directed or weighted graphs additional restrictions are 

imposed on directions and weights of the edges. 

The graph isomorphism problem is one of computational complexity theory standard 

problems belonging to NP, but not known to belong to P (in assumption that P ≠NP).  

It’s not known yet whether this problem is belonging to NP-complete [2], but it’s 

known that subgraph isomorphism problem is belonging to NP-complete. Thus, the 

recent researches for both random and specific graphs are relevant. 

Graph invariant is any graph property which is equal for isomorphic graphs [3, 4].  

Graph invariant is complete if its value is equal for two graphs if and only if these 

graphs are isomorphic. Currently known complete graph invariants are min-code and 

max-code code of adjacency matrix obtained by writing out binary adjacency matrix’s 

values in place followed by subsequent transfer of the resulting binary number to 

decimal form. Man-code corresponds to such order of adjacency matrix’s rows and 

columns when the result value is the largest.  Currently complete graph invariant 

which can be calculated in polynomial time is not known. But it’s not proved that 

such invariant does not exist. 



Data Science                                                                       Sayfullina EF. A heuristic approach… 

Information Technology and Nanotechnology (ITNT-2016)                                                    839 

The most obvious graph invariants are number of vertices n(G) and number of edges 

m(G). 

For graph G = (V, E) number of vertices adjacent with vertex v or number of rows 

incident with vertex v is called degree s of vertex v.  Apparently that for any isomor-

phic graphs L and L’ corresponding vertices are having the same degree. 

For graph G an arranged system of degrees (s1, s2, …, sn) of its  vertices is called de-

gree sequence s(G). It also called graphic sequence. 

A degree sequence s(G) = (s1, s2, …, sn) produces two more numeric graph invariants: 

min(si) and max(si) (i = 1,2,…n). The second one is also called graph degree. 

Description of heuristic approach to the verification of isomorphic 

graphs and results of computational experiments 

This paper examines the following graph invariants [1, 3, 4]. 

Chromatic number, the smallest number of colors for the vertices in a proper coloring. 

Diameter, the longest of the shortest path lengths between pairs of vertices. 

Wiener index – ),,( ji vvd  where d(vi, vj) – shortest path between vertices vi and 

vj. 

Randic index –  
),( )()(

1

ji vv ji vdvd
r , where vi and vj are two adjacent vertices, 

d(vk) – degree of vertex k. 

Determinant of adjacency matrix. 

Number of connected components. 

Cyclomatic number – minimal number of edges which need to be removed in order to 

graph became acyclic.  p1(G) = p0(G) + |E(G)| - |V(G)|,  where p1(G) – cyclomatic 

number, p0(G) – number of connected components, |E(G)| – number of edges, |V(G)| – 

number of vertices. 

We describe a new graph invariant (property) second-level degree sequence (such 

invariant can be described based on more general models [5]). Every element of this 

sequence is a list of degrees of the vertices adjacent to the current vertex of graph. It’s 

obvious that this property is a graph invariant. 

There are two graphs on the pictures below and the values of the invariants for these 

graphs (Table 1).  

The values of these invariants are equal for Graph1 and Graph2. But  these two 

graphs have different second-level degree sequences: [[2, 3, 3, 4, 5, 5, 6], [3, 3, 4, 4, 

5, 7], [2, 3, 5, 6, 7], [3, 4, 4, 5, 7], [3, 5, 6, 7], [3, 3, 5, 6], [5, 6, 7], [4, 5, 7], [4, 4, 6], 

[5, 7]] – for Graph1, and [[2, 3, 3, 4, 5, 5, 6], [2, 3, 4, 4, 5, 7], [3, 3, 5, 6, 7], [3, 4, 4, 5, 

7], [3, 5, 6, 7], [3, 3, 5, 6], [4, 5, 7], [4, 5, 7], [4, 5, 6], [6, 7]] – for Graph2. Thus, it 

can be concluded that Graph1 and Graph2 are nonisomorphic. 

For graph isomorphism problem (in case of random graph) all know algorithms ensur-

ing the correct answer are exponential.  But for almost every discrete optimization 

problem there several different approaches for construction of algorithms that are 

solved this problem.  Each of these approaches is more effective for specific set of 
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incoming data.  Regarding this statement in 1997 NoFreeLunchTheorem [6] was for-

mulated and proved. There several different interpretations of this theorem. One of 

these interpretations is described below. 

Table 1. Invariants of Graph 1 and Graph 2 

 Graph1 Graph2 

Number of vertices 10 10 

Number of edges 21 21 

Degree sequence [2, 3, 3, 3, 4, 4, 5, 5, 

6, 7] 

[2, 3, 3, 3, 4, 

4, 5, 5, 6, 7] 

Determinant of adjacency 

matrix 

0 0 

Number of connected com-

ponents 

1 1 

Chromatic number 3 3 

Graph diameter 3 3 

Wiener index 142 142 

 

Fig. 1. Graph1 

 

Fig. 2. Graph2 

There is set of incoming data for the considered discrete optimization problem, in-

stead of the set of incoming data an algorithm for generation of the incoming data is 

often specified. If for some set of incoming data (specified or generated) some dis-

crete optimization problem solvation algorithm is optimal regarding some criteria (i.e. 

execution time), then there is other incoming data set for which this algorithm is not 

optimal regarding the same criteria. 
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During the research algorithms for random generation of graphs were described and 

implemented. Based on this algorithms a heuristics approach (depending on a given 

generation algorithm) for graph isomorphism problem solvation was described and 

implemented. 

 For computational experiments 1000 algorithms were randomly generated from the 

eight graph invariants: 

 Chromatic number; 

 Determinant of adjacency matrix; 

 Graph diameter; 

 Number of connected components; 

 Cyclomatic number; 

 Wiener index; 

 Randic index; 

 Second-level degree sequence. 

For two validated graphs during each of these algorithms the values of these proper-

ties are calculated and then then comparing in particular order. If the value of one of 

these invariants is different for the two graphs, then the algorithm is stopped with the 

conclusion that these graphs are not isomorphic.  If for all eight invariants the value 

are equal for two graphs then these graph are expected to be isomorphic. 

The Markov chain was used for computational experiments. This chain consists of 

five states (probability of each state is 0.2). Each state is one of the following algo-

rithms for random generation of graphs with given degree sequence. 

 Markov chain Monte Carlo (MCMC) algorithm [7] 

 A Sequential Importance Sampling Algorithm for Generating Random Graphs with 

Prescribed Degrees [8] 

 Algorithm developed by A. Steger and N. Wormald [9] 

 Algorithm for generation of graphs with given degree sequence developed by au-

thor [10] 

 Algorithm for generation of graphs with given second-level degree sequence de-

veloped by author [10] 

The algorithm of computational experiments is described below. 

Input: number of vertices and distribution function of degree sequence. 

 Generate degree sequence according to the given distribution function (such as 

Binominal distribution, Poison distribution, Zipf distribution). 

 Generate initial graph with this degree sequence using Havel-Hakimi criteria [11] 

 Generate graph with this degree sequence using the algorithm from the current 

state of the Markov chain. 1000 iterations were executed for Markov chain. Om 

each iteration one of the 1000 algorithms (one of the 1000 generated sequences of 

graph invariants comparison) were executed to validate whether initial graph and 

generated graph are isomorphic. 

Based on the results of the computational experiment it can be concluded that the 

most effective invariants are Wiener index and second-level degree sequence and the 

least effective is determinant of adjacency matrix. 
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Conclusion 

Described approach is one of the possible ways to choose the most efficient from 

several algorithms for solving some discrete optimization problem. In this case this 

approach was applied for graph isomorphism problem. Moreover, the algorithm is 

chosen for the given or generated input data. 
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