A CHR-Based Solver for Weak Memory Behaviors*

Allan Blanchard!?, Nikolai Kosmatov!, and Frédéric Loulergue?

1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastnamelcea.fr
2 Univ Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France

Abstract

With the wide expansion of multiprocessor architectures, the analysis and reasoning for programs
under weak memory models has become an important concern. This work presents an original constraint
solver for detecting program behaviors respecting a particular memory model. It is implemented in
Prolog using CHR (Constraint Handling Rules). The CHR formalism provides a convenient generic
solution for specifying memory models, that benefits from the existing optimized implementations of
CHR and can be easily extended to new models. We briefly present the solver design, illustrate the
encoding of memory model constraints in CHR and discuss the benefits and limitations of the proposal.

1 Introduction

Concurrent programs are hard to design and implement, especially when running on multi-
processor architectures. Multiprocessors implement weak memory models [2] that allow, for
example, instruction reordering or store buffering. Thus multiprocessors exhibit more behav-
iors than Lamport’s Sequential Consistency (SC) [9], a theoretical model where the execution
of a program corresponds to an interleaving of the different threads.

Recent years have seen many works on formalization of weak memory models, both on
hardware and software sides [12, 4, 10, 5, 6, 3, 1]. These formal models give us a way to
compute, given a program and a memory model, the set of concrete executions allowed by the
model. We can determine for example whether all executions of a program under a certain
model are admitted under SC, and therefore, whether we can reason about this program using
an interleaving semantics.

We propose a constraint solving based technique that allows to determine all admissible
executions of a program under a memory model. This technique relies on Prolog and CHR
(Constraint Handling Rules) [8]. A CHR program is a list of rules that act on a store of
constraints, by adding or removing constraints in this store. The rules are activated if a com-
bination of constraints in the store match the head of the rule (and satisfy an optional Prolog
predicate called the guard). In our case, constraints are relations between instructions that are
basically related to their order of execution. Rules are used to propagate information and to

*Work partially funded by French ANR (project SOPRANO, grant ANR-14-CE28-0020).

1 :- include(sc). % :-include(tso).% for SC or TSO
po: Thread 0 Thread 1 2
- 1. . _ 1. 3 program_pO (Vars, [Thread0O, Threadl]) :-
(Z‘OO) x=1 (7110) y= L 4 vars =[x, v1,
(i01) To = 7; (411) T1 = x; 5 Thread0 = [(st,x,1), (1d,y,R0) 1,
6 Threadl = [(st,y,1), (1d,x,R1)].
7 program_pl (Vars, [ThreadO,Threadl]) :-—
Pi1: Thread 0 Thread 1 8 vars =[x, vy1,
(i00) x = 1; (i10) v = 1; 13 ?ireaig - (sE,x,?, ﬁ(any,anym ‘ii’y’if’ 1,
(i61) fence; (1,11) fence; 10 readl = [(st,y,1), f(any,any), (1d,x,R1)].
(262) Yo=Y, (2/12) ry = Xj§ 12 ?- program_pO (Vars, P), apply_model (Vars, P).
Figure 1: (a) Two programs po and p;, and (b) their implementations with a solving request.

produce, from a given set of relations, more relations (characterizing the instruction ordering)
that were previously unknown in the execution.

The contributions of this paper include a novel CHR-based technique for detection of
admissible behaviors under memory models and a constraint solver prototype' implementing
this technique for SC, TSO and PSO models. We discuss the benefits and limitations of this
approach, and show how the use of CHR allows us to define our model in a concise and intuitive
way, taking advantage of a well-established specification and solving mechanism.

Outline. Section 2 presents weak memory models vs. SC model. Section 3 presents
the solver, explains its functionality and optimizations, and points out some soundness and
performance aspects. Section 4 discusses its benefits and limitations, and gives future work.

2 Weak Memory Models

A memory model describes how a program can interact with memory during its execution.
Technical manuals of processors are often vague, and sometimes erroneous. Formal descriptions
are necessary, but must be as abstract as possible to ease reasoning about them.

In a parallel context, Lamport [9] proposed sequential consistency (SC) where the semantics
of the parallel composition of two programs is given by the interleaving of the executions of
each program. For example, if we consider that two memory locations x and y initially contain
0 and that r; are processor registers, the program pg in Fig. la can only give one of the three
possible final results: either ro =0 and ry =1, or ro =1 and ry =1, or ro =1 and r; = 0.
The last result is obtained by the interleaving (i10)(211)(%00)(%01)-

However, for the sake of performance, no current multiprocessor provides a sequentially
consistent memory model. Models are relaxed or weak with respect to SC. In most processors,
it is also possible to obtain the result ro = 0 and r; = 0, not justifiable by an interleaving. To
avoid this behavior, one can use memory barriers or fences that forbid reorderings through
them (see program p; of Fig. la).

There exist operational models for some weak memory models, for example [6]. However
this kind of approaches is not really appropriate to capture the various existing memory models
of processors and programming languages. Most approaches are based on constraints expressed
as partial orders on events. In the case of memory models, the events of interest are related to
memory: read (load) from, and write (store) to a memory location, as well as memory barriers.

Constraint-based approach have already been used to model memory models, see for ex-
ample [11]. In this work, we propose a different approach using the particular case of CHR.
Following [3], we use several relations to formalize memory models. The PO relation, for

1 Available at http://frederic.loulergue.eu/CHR/wnm.tar.gz.

http://frederic.loulergue.eu/CHR/wmm.tar.gz

“program-order”, simply expresses that an instruction appears before another one in the list of
instructions defining a thread. The CO relation, for “coherency-order”, is a per location total
order of the write actions. The RF relation, for “read-from”, determines which write operation
assigned the value at a location before this value is read from this location: it associates a
unique write to each load. The FR relation, for “from-read”, relates each load operation with
each of the write operations (if any) that overwrite the value after it was read by the load.

3 The Solver

3.1 Overview

A (candidate) execution can be determined by a total ordering (permutation) of memory stores
to each location (CO), and an association of a unique store to each load (RF). (They can
conflict PO, i.e. the initial order of instructions in threads.) Relations between instructions are
modelled by CHR constraints. To compute admissible executions of a program under a given
model, we generate all candidate executions (represented by the aforementioned relations), and
filter them on-the-fly using CHR rules defined for the model. The set of candidate executions
is easily generated (in our case, by a Prolog program using backtrack) by enumerating all
possibilities of these relations. Without additional constraints, this set contains the executions
authorized by a very weak generic model [3] allowing lots of intuitively incoherent behaviors
(e.g. where, within the same thread, an old value that has been overwritten can still be read
from the location after the overwriting operation).

To keep only executions allowed by the target memory model, we define CHR rules to filter
out cases where the relations between instructions of a given execution are inadmissible. The
principle is to compute the transitive closure of certain ordering relations (depending on the
model) that the execution must satisfy according to the model. If the computed transitive
closure exhibits a cycle, then, according to the model, some program instruction has to be
executed strictly before itself, which is incoherent: the execution is not allowed. If this closure
has no cycles, the ordering relations are admissible and the execution is allowed by the model.
To efficiently use CHRs, we declare all CHR rules needed by the model before the Prolog
program, so that they detect incoherent executions as early as possible during their generation.

Language. An input program is modelled by the list of declared variables and the list of lists
of instructions of its threads. The implementation of py and p; in Prolog is shown in Fig. 1b,
lines 4-6, 8-10. The considered instructions are either a memory operation (load or store) or a
fence. A load (resp. a store) is a tuple (1d, loc, wv) (resp. (st, loc, v)) where loc is the
read (resp. written) location and v its value. A fence, written £ (0P1, OP2), takes as parameters
the types of instructions whose order we want to force. For example, by writing f (st, 1d), we
state that any store preceding this fence is ordered strictly before any load following the fence.
The notation any expresses “any type of operation”. For example, £ (1d, any) states that all
loads preceding the fence are ordered before any instruction that follows it.

3.2 The Generic Model

A first step is to take the list of instructions of each thread and to enrich them by the
thread identifier and instruction index in the list. As we perform this operation, we
also create CHR constraints i/5, fence/4 for memory operations and fences of the form
i(n_thread, n_inst, op, loc, V) and fence (n_thread, n_inst, t_opl, t_op2). In
this model we consider PO, CO, RF, FR and barrier relations, defined by CHR constraints

:— chr_constraint rel/3, trace/3, cycle/2.

trace (R,Begin,End) \ trace(R,Begin,End) <=> true.

trace (R,Begin,End), rel(R,End,Begin) <=> cycle(R,Begin).

trace (R,Begin,End), rel(R,End,Next) ==> inf (Begin,Next) | trace(R,Begin,Next).
rel (R,Begin,End) ==> inf (Begin,End) | trace(R,Begin,End) .

Figure 2: Cycle detection (file cycle.pl).

po/2, co/2, rf/2, fr/2, barrier/2. We extract po relation by reading the list of instruc-
tions of each thread and setting po for two consecutive memory operations in it. For example,
the constraint po(i(0,0,st,x,1),1(0,1,1d,y,R0)) will be generated to represent the pro-
gram order of the two instructions igg and ig; of thread 0 of py in Fig. 1a. We also define ipo,
the transitive closure of po.

The relations CO and RF are generated by enumerating all possible solutions in a straight-
forward way. The CO relation is obtained after generating a permutation of all stores
to each memory location (with an additional store at the beginning to write undefined),
and setting the constraints co(il,i2) for any two consecutive stores (...,11,i2,...)
in the permutation. The RF relation associates each load to a possible origin store.
For the example of execution of Sec. 2, returning ro =1 and r; = 0, the constraints are
rf(i(1,0,st,y,1),i(0,1,1d,y,1)) and, as we add a store to undefined for initializa-
tion, rf (i (-1,-1, st, x,undefined), i(1,1,1d,x,undefined)). Notice that the read val-
ues (here, Prolog variables RO, R1) are unified with the written ones. The -1 value of
n_thread, n_inst indicates the initial definition of the program memory state.

The relation FR is computed by two rules: rf(ST,LD), co(ST, ST2) ==> fr (LD, ST2)
and fr (LD, ST), co(ST,ST2) ==> fr (LD, ST2). The first one means “if there is a RF-relation
between ST and LD, and there is a CO-relation between ST and ST2, then add a FR-relation
between LD and ST2”. The second adds the subsequent overwritings, if any.

Finally, we have some CHR rules that, taking the set of instruction constraints and the
set of fence constraints, produce barrier constraints that force order on instructions. One
example for p; in Fig. la is barrier (i (0,0,st,x,1),1i(0,2,1d,y,R0)).

3.3 Cycle Detection

Basically a memory model is defined by the relations between instructions that are allowed by
the model. As these relations between two instructions express which one appears before the
other, we can transitively produce all chains of dependencies. If a chain is a cycle, the execution
exhibits an incoherence, since it means that an instruction happens before itself. The detection
of a cycle is done by the CHR code of Fig. 2.

We use three CHR constraints. Constraint rel (R, Begin, End) states that instructions
Begin, End are related by relation R. The transitive closure trace (R, Begin, End) means
that Begin, End are transitively related by a trace, that is, a chain of relations R, while
cycle (R,Begin) indicates that a cycle is found from Begin to itself.

The first rule (line 2) is a simpagation rule, written A \ B <=> C. The meaning is “if there
exist two constraints A and B, add C, keep A and remove B”. So here, the goal is to remove
duplicate traces with the same origin and end, as they will generate the same final traces.

The simplification rule at line 3 expresses that, if we have a trace from Begin to End, and
we find a relation between End and Begin, we have to replace these two constraints by a new
one that indicates the existence of a cycle starting from Begin.

© 00O Uik WN -

10
11

:— include (generic_model) .
:— include (uniproc) .
:— chr_constraint rfe/2 , ppo/2, tso/2.

:— include (generic_model) . X
% po-WR pairs are not preserved by TSO

:— include (cycle) .

OO0 Uk WN -

i- i ppo(i(_,_,st,_,_), i(_,_,1d,_,_)) <=> true.
:— chr_constraint sc/2. (10, 1T) S e (10,115
I ext (1 (T0,_, ,_,_), 1(Tl,_,_,_,_)):= \+ TO = TIl.
sc(I0,I1), sc(I0,I1l) <=> SC(IO’II)'lo rf(10,I11) ==> ext(I10,I1) | rfe(IO0, I1).
po(ig'ﬁ) ii chgli)' 11 tso(I0,Il1) ==> rel(tso, IO, Il).
C(f)(IO,Il) s SC(IO,I1). 12 barrier(I0,I1) ==> tso(I0,I1).
E (IO,I]_) :> SC(IO'H)' 13 ppo(10,1I1) ==> tso(I0,I1).
PO T == se (10 T - 14 rfe(10,11) ==> tso(I0,I1).

15 co(10,1I1) ==> tso(I0,Il).

16 fr(10,1I1) ==> tso(I0,I1).

Figure 3: Solver files for memory models (a) SC and (b) TSO

The third rule produces the transitive closure by adding longer traces whenever it finds a
relation to continue an existing trace, unless it leads to a cycle since the cycle detection is fired
by the previous rule. The order of rules is thus essential for performance. To optimize the search
further and to limit the quantity of traces we work on, we consider an arbitrary total order inf
on instructions, and we add an instruction to a growing trace only if it is strictly greater (w.r.t.
inf) than the origin of the trace. Indeed, since we compute traces from every instruction at the
same time, to detect any cycle it is sufficient to compute traces going only through instructions
strictly greater than the trace origin (cf. Sec. 3.5). We ensure this behavior by the CHR, syntax
R ==> Guard | N which says “if we match R, add N only if Guard is true”.

The fourth rule selects every known relation between two instructions and adds it as a cycle
candidate trace (using the same optimization by inf as above).

If we wish to keep only allowed executions, we can optimize the constraint filtering even
further and add another rule cycle(_,_) <=> false that fails whenever a cycle is detected.
Thus, inadmissible executions will be rejected as soon as detected.

3.4 Formalization of a Memory Model

To formalize a model we first identify the relations that it preserves and we create a new relation
that we name according to the model acronym. Each occurrence of a preserved relation will
create a new constraint with this name. The goal is then to produce the transitive closure and
to launch the detection of cycles for this constraint.

For example, SC preserves the relations PO, CO, RF and FR and it does not care about
barriers (since instructions are necessarily kept in order due to PO). We will name the new
relation sc. Fig. 3a shows how we model it with CHR. Line 5 launches the computation of the
transitive closure. Basically, every time we find a constraint sc (2, B) we add a new constraint
rel (sc, A, B). The cycle detection is provided by the inclusion of cycle.pl, line 2. Cycle
rules and rel rule are added before any other rule about SC, to ensure the earliest detection
of cycles. Lines 7-11 show how to state that sc preserves other relations. Every time such a
relation is met, we add a new sc-relation.

Another interesting case is when the target model is more relaxed, that is, when the model
preserves only some relations of the generic model. For example the TSO model will relax
two kinds of relations: program order when the instructions are a store followed by a load,
and read-from when the two instructions are in the same thread. The reordering propagates

transitively: multiple stores can be reordered after consecutive loads. If the developer wants to
restore these relations, they will have to add fences. This model is illustrated in Fig. 3b.

We add a relation named ppo (“preserved-program-order”). Every relation ipo will generate
a relation ppo except the ones mentioned before. So we add the rule on line 5, that replaces
every constraint ppo (store, load) by “true”, which means that we just remove it, and a rule
(line 6) that will generate ppo from ipo. We add another relation named rfe (“read-from-
external”). The associated rule (lines 8-9) builds rfe-relations from rf by only adding those
that concern instructions in different threads. Finally, we create the tso relations as for SC.
Again, the order of rules here is essential for both soundness and performance (cf. Sec. 3.5).

Most weak memory models respect a coherency between communications (CO, RF, FR)
and PO per location. In essence, it restores the uni-processor coherency (e.g. it forbids to read
an old value from an overwritten location, that is allowed by the generic model, as mentioned
in Sec. 3.1). It is formalized in the included uniproc file (not detailed here), which includes
and relies on cycle, so we do not have to include it again.

The implementation of the PSO model is quite straightforward once TSO is implemented.
It consists in weakening the preserved-program-order a bit more by removing all ipo-pairs
starting with a store instead of only removing store-load pairs. Concretely, we replace the rule
line 5 in the TSO model by the following one: ppo (i (_,_,st,_,_), _) <=> true.

Applying the solver to programs. The application of the solver for a given model to a
program is performed automatically as illustrated in Fig 1b for program py described in Sec. 2.
We include the target model, that already includes the generic model with all other necessary
definitions. The program is loaded using two variables (variables involved in the program and
lists of instructions of threads). Applying the target model solver to the program (line 13)
will generate all candidate executions, and the CHR rules of the model will determine if each
execution is allowed by the model or not.

In this case the SC model detects 3 admissible executions for both programs pg and p;.
The TSO model allows 4 admissible executions for pg, while for p;, as we have fences, some
relations will be restored and TSO will allow only 3 executions (exactly as SC). TSO allows
more executions than SC on pg since ST/LD pairs of instructions can be reordered (that can
lead to the result ro = 0 and r; = 0). In p;, we restore the sequentially consistent behavior of
po by adding fences, preventing reordering even in the TSO model.

3.5 Discussion on Soundness and Performance

While using CHR, the order of rules can be essential for both soundness and performance.
We emphasize two particular points regarding the order of rules in the proposed solver: cycle
detection and computation of preserved-program-order relation ppo.

In cycle detection (cf. Fig. 2), we want to ensure that the solver does not miss any traces
and avoids to consider equivalent traces when possible. First, as mentioned in Sec. 3.3, the rule
at line 2 in Fig. 2 removes equivalent traces that have exactly the same origin and end points.
As it is the first rule, we will not waste time by using the following rules for two equivalent
traces since we will keep only one of them. Second, trace generation starts simultaneously from
all known relations rel (R, Begin, End) where instruction Begin is less than End, while other
instructions are added at the end of a trace only if they are greater than its origin (lines 4-5).
So, every cycle has a minimal instruction from which we can find this cycle as a trace from an
origin through greater instructions followed by a return to the origin, cf. line 3. (Notice that
we still need to consider subtraces of the same cycle when they start from other nodes.) Third,
the addition of an instruction to a trace (line 4) is done by adding a new constraint, without

T W N =

removing the “old” ones that can still be necessary to generate other grown traces, so we do
not miss paths.

When defining a relation such as preserved-program-order ppo (cf. Sec. 3.4), there are
two ways to proceed: to define preserved relations or to define removed relations. The first
way is always sound (as we only add information), while the second one requires more care. In
particular, it is important to place the rule which removes relaxed relations before the rules that
generate the constraints for cycle detection (see e.g. lines 5-6, 11, 13 in Fig. 3b). Otherwise,
these rules would generate constraints for cycle detection before the relaxed relation is actually
removed from the store and could thus forbid allowed executions.

Experiments. We tested our solver for different models against 18 examples? provided for the
implementation of a dedicated tool Herd [3]. On these small (but representative) examples, our
solver returns the same allowed executions as those found by Herd.

Execution time on these examples being too fast, we also compare performances of our
solver with Herd on some examples involving a series of (possibly wrong) message passing.
Experiments have been performed on an Intel Core i7-4800MQ), 4 cores, 2.7Ghz, 16Go RAM.
For example, the following code involves three message passing:

mp3 (V, TO,T1,T2]1) :-
v = X, m] ’

[

(
TO = [(st,x,1), (st,m,1), (1d,m,MO), (1d,x,X0)],
Tl = [(ld,m,M1), (1d,x,X1), (st,x,2) , (st,m,2)],
T2 = [(1d,m,M2), (1d,x,X2), (st,x,3) , (st,m,3)].

In such an example, the typical question is: if we get MO = 3, M1 = 1 and M2 = 2, do we get

X0 = 3,X1 = 1 and x2 = 27

As it is composed of multiple writes and reads
to the same locations, the combinatorial explo- [Model Data 3MDP AMP
sion is very fast. For each model, we indicate Hexec 678 31332
the number of allowed executions and the time | g¢ CHR. 3.35 T47s
needed to compute them with our CHR-based Herd 5.55 < 1h
solver and with Herd. The timeout is fixed to Fexec 300 06 498
1 hour. The number of executions indicated for | 7gq CHR 3.95 759
the generic model corresponds to the number of Herd 41s > 1h
candidate executions. We present here the results Fexec 2958 516 030
for 3 and 4 message passings (denoted 3MP and PSO CHR 6.4s 9796
4MP). Herd 3.85 > 1h

In this benchmark, our solver is configured to Zoxec | 147436 | 255000000
immediately reject forbidden executions as soon Generic || CHR 3.3 > 1h
as they are detected, while Herd does not per- Herd 1.9¢ 1405s

form such early rejections. When combinatorial
explosion becomes really big, our solver computes

allowed executions faster than Herd thanks to an early pruning of the search tree.

4 Conclusion and Future Work

We have presented an original CHR-based solver for detection of admissible executions of a
given program w.r.t. a given memory model, and illustrated it for SC, TSO and PSO models.

2Examples available at http://virginia.cs.ucl.ac.uk/herd/ (record “armed cats”).

http://virginia.cs.ucl.ac.uk/herd/

It is suitable for a rigorous exhaustive analysis of program executions of small programs that
becomes intractable for bigger ones due to the combinatorial explosion of their number.

We think that seeing memory models as constraints over executions is well adapted. The
design of such a solver is convenient and pragmatic. The generation of basic executions and
cycle detection relies on a few optimizations in order to be more efficient and to ensure on-
the-fly filtering of constraints. The proposed approach makes the definition of specific models
from the generic one very practical and relatively straightforward. In particular, it is not very
hard when the model becomes more complicated, as for models like ARM for example. CHR
provides an easy way to express constraints about execution of programs, they have also been
used for detection of incorrect behaviors in imperative program analysis in [7].

Moreover, the use of a well established mechanism of constraint specification and solving,
here Prolog and CHR, brings the benefit of years of optimization and debugging to handle
our problem without having to re-develop constraint resolution. We do not claim that our
implementation of this problem is most efficient. Dedicated tools like [3] could be faster since
they are specialized for this precise problem and can implement a solving engine without being
as generic as CHR. But such dedicated tools are harder to develop as they potentially require
a new optimized code that has to be carefully developed and debugged.

In future work, we plan to extend the solver to other models, like ARM. It would be
interesting to support other kinds of instructions (e.g. binary operations) to handle all kinds of
data or address dependencies often used for synchronization in ARM. Another direction would
be to experiment on different programs of various sizes to produce precise benchmarks, in order
to compare the solver to dedicated tools, as well as to further optimize it.
Acknowledgment. The work of the first author was partially funded by a Ph.D. grant of the
French Ministry of Defence. Thanks to the anonymous referees for their helpful comments.

References

[1] Tatsuya Abe and Toshiyuki Maeda. Optimization of a general model checking framework for
various memory consistency models. In PGAS 2014, 2014.

[2] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.
Computer, 29(12):66-76, 1996.

[3] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation, test-
ing, and data mining for weak memory. ACM Trans. Prog. Lang. Syst., 2014.

[4] Arvind and Jan-Willem Maessen. Memory model = instruction reordering + store atomicity. In
ISCA 2006, 2006.

[5] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory model. In
PLDI 2008, 2008.

[6] Gérard Boudol and Gustavo Petri. Relaxed memory models: An operational approach. In POPL
2009, 2009.

[7] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. Program
verification using constraint handling rules and array constraint generalizations. In VPT 201/,
co-located with CAV 201/, pages 3-18, 2014.

[8] Thom Fruhwirth. Theory and practice of constraint handling rules. The Journal of Logic Pro-
grammaing, 1998.

[9] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Program. IEEE Trans. Comput., 1979.

[10] Vijay A. Saraswat, Radha Jagadeesan, Maged M. Michael, and Christoph von Praun. A theory
of memory models. In PPoPP, pages 161-172. ACM, 2007.

[11] Emina Torlak, Mandana Vaziri, and Julian Dolby. MemSAT: checking axiomatic specifications of
memory models. In PLDI, pages 341-350, 2010.

[12] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. UMM: An operational memory model
specification framework with integrated model checking capability. Concurr. Comput. : Pract.
Ezper., 17(5-6):465-487, 2005.

	Introduction
	Weak Memory Models
	The Solver
	Overview
	The Generic Model
	Cycle Detection
	Formalization of a Memory Model
	Discussion on Soundness and Performance

	Conclusion and Future Work

