
Interactive Learning of HTML Wrappers Using
Attribute Classification?

Michal Ceresna

DBAI, TU Wien, Vienna, Austria
ceresna@dbai.tuwien.ac.at

Interactive Learning of HTML Wrappers Using
Attribute Classification?

Michal Ceresna

DBAI, TU Wien, Vienna, Austria
ceresna@dbai.tuwien.ac.at

Abstract. Reviewing the current HTML wrapping systems, it is possi-
ble to recognise two mainstream categories. The first category are sys-
tems based on various machine learning techniques with lower roll-out
and maintenance costs, but reaching worse results and usually being spe-
cialised to particular domains. The second category are systems which
allow to build more complicated wrapping solutions. But here a human
wrapper designer is required to build and maintain the wrappers. There-
fore, it increases costs for acquiring of the information.
In this paper we apply machine learning techniques to automate and
simplify building of the HTML wrappers by the wrapper designer. We
present a learning algorithm that creates wrappers from interaction with
an human designer. She only marks positive and negative example in-
stances inside of the currently rendered Web and an HTML wrapper is
generated from this interaction. The learning algorithm presented in this
paper is based on clustering of the example instances with respect to the
similarity of their tree shape and on classification of HTML attributes
inside of each cluster.

1 Introduction

Commonly adopted strategies for accessing of the data located on Web pages
are technologies known as Web information extraction or HTML wrapping. They
turn interesting data in Web pages into formats suitable for further machine pro-
cessing such as XML [1], data models of integrated applications [13] or relational
databases [10].

Over the time various approaches of building the HTML wrappers have been
researched. Chronologically, the following mainstreams can be recognised: hand
coded wrapping programs [7], inductive learning of string based automata [8],
semi-automatic visually guided construction [1] and machine learning techniques
using support vector machines [10] or Markov models [9].

In this paper we focus to approaches that represent Web pages in form of
a DOM tree [11]. DOM trees are constructed using parsers from modern Web
browsers such as Mozilla and Internet Explorer. The extraction process is then

? This work is partially supported by the GAMES Network of Excellence of the Eu-
ropean Union.

Vojtěch Svátek,Václav Snášel (Eds.): RAWS2005, pp. 25–32, ISBN80–248–0864–1.

26 Michal Ceresna

executed on the DOM tree instead of the HTML source code. Having a DOM
tree, the HTML wrapping can be viewed as identification of the relevant parts,
for example subtrees in the input DOM tree. The interesting data chunks to be
extracted from a DOM tree are called instances. The usually extracted types of
instances are: sets of tree nodes in the given input DOM tree, substrings from
text content nodes or values of tree element attributes. Examples of the various
instance types are in the Figure 1 highlighted with green background.

Fig. 1. Different types of instances extracted from Web pages

Operating on the DOM-tree, various techniques are used to express how to
extract the interested instances from the given Web page. We have identified the
following existing approaches: Datalog-like programs evaluated over tree domains
[1], finite (tree) automata [2,4], XPath and XQuery node selection queries [5,3].
None of these approaches is fully automated. Either the user has to construct
the wrapper manually with a visual assistance of the wrapper system [1,5] or
only tree structures are learned, but with difficulty of handling various kinds of
HTML attributes and text contents [2,4].

This paper is structured as follows. In Section 2 we give an overview of the in-
teractive wrapper generation. Section 3 is devoted to the wrapper induction and
extraction using the induced wrapper. Section 4 discusses experimental results
and highlights future research directions.

2

Interactive Learning of HTML Wrappers Using Attribute Classification 27

2 Interactive Wrapper Generation

Human beings tend to assign semantic meaning to parts of a Web page. Human
designer does not think of HTML table as of a tree with some text values, but
rather as of a list with book entries that contain book title, author name and
ISBN number. Therefore, the basic building block of our wrappers are a so-called
patterns, containers for pieces of information (instances) with the same meaning.
Patterns are hierarchically organized into a tree structure. That is, except of the
top-level pattern, has each pattern exactly one parent pattern. An example of
the hierarchical pattern structure is illustrated in the Figure 2.

Each pattern contains from one or more filters that define how to extract
the relevant instances for this pattern. Filter is an unary function that returns a
set of output instances extracted from a given input instance. A set of instances
extracted for a pattern is then an union of instances extracted by all its filters.
Inputs of these filters are instances of the parent pattern or the whole example
HTML document in case of the top-level pattern.

Fig. 2. Pattern structure of a wrapper

We present a learning algorithm that shifts the task of constructing the filters
from the user to the wrapping system. Wrappers induced by this algorithm
still preserve the expressiveness of manually constructed HTML wrappers. Our
interactive wrapper generator creates filters from a visual interaction with a
human wrapper designer. The user is asked to mark via mouse clicks positive and
negative example instances inside of the rendered HTML page. Such interaction
is then technically equivalent to the marking of nodes in the DOM tree. The
goal of the interaction is to help the system to discover the filters that correctly
identify all the desired patterns. The process of the interaction is outlined as a
loop of the following steps:

1. Select an example input instance (or whole
HTML document).

2. On this input mark missing instances not yet
recognised by the system or drop instances
that were incorrectly identified by the sys-
tem.

3. When the system correctly matches all of
the intended instances inside of the current
input, user decides whether to continue with
training/testing on another input instance
or HTML document.

3

28 Michal Ceresna

3 Wrapping Induction with Attribute Classification

3.1 Clustering of example instances

In this section we present a wrapper learning algorithm using clustering and
attribute classification. We will demonstrate the learning algorithm on the Web
page displayed in Figure 3 which allows us to show the interesting properties
of this algorithm. Inside of the example Web page, we are interested to extract
city names (’Vienna’, ’Prague’, ’Bratislava’) and the contact links with the black
text colour (’contact1’, ’contact3’, ’contact5’). The set of positive and negative
instances received so far from the user is marked with green, respectively with
red background.

Fig. 3. Example Web page for attribute classification

During the training process the wrapper learning algorithm proceeds with
the following steps:

1. Sort example instances into clusters with respect to similarity of their tree
structure.

2. For each cluster build the list of features used for classification. The list is
computed from attributes and their values that are contained in the training
examples.

3. Build the training dataset.
4. For each cluster build a decision tree based attribute classifier.

The clustering of example instances according to the similarity of the tree struc-
ture is implemented using the nearest neighbourhood grouping. As distance met-
rics for two DOM trees is used the tree edit distance [12]. During the clustering
process a DOM tree becomes pivot of a new cluster, if its distance from pivot
trees of all existing clusters oversteps above a chosen threshold. In that case, a
new cluster is created and the existing instances are regrouped to their closest

4

Interactive Learning of HTML Wrappers Using Attribute Classification 29

Fig. 4. Clustering of example instances

Algorithm 1 Extraction process using attribute classifiers
for cluster in clustering

instances = evaluateXPath(cluster.xpath, INPUT_DOCUMENT)
for instance in instances:

testExample = buildTrainOrTestExample(cluster.featuresDef, instance)
if cluster.classifier.classify(testExample)==’yes’

add ’instance’ to matched instances

cluster. The Figure 4 contains a clustering of the instances from our example
Web page depicted in Figure 3.

Each cluster is divided into blocks. Essentially each DOM element forms
its own block, just for some types of the DOM elements, we use the built-in
knowledge of HTML and merge several elements into a single block. Examples
of elements merged into one block are <table>/<tbody>, <p>/<center> or
/#text.

In the presented approach pattern contains a set of filters. Each cluster defines
one extraction rule which is a pair consisting of a CoreXPath expression [6]
and an attribute classifier. The XPath expression is used to find DOM nodes
(instances) inside of the input DOM tree matching the particular tree shape of
the cluster. Subsequently, the attribute classifier is used to sort out the instances
with incorrect attributes and properties. Extraction process using this type of
filter definitions is outlined in the Algorithm 1.

3.2 Building Features

Building of a decision tree requires to know which features are available and
what are the possible values for these features. Therefore, before training of the
DOM attribute classifier we construct a list of interesting features considered by
the classifier.

The list of the features is built from the set of DOM attributes and text
node values contained in the cluster. The same DOM attribute may repeat in
several blocks of the same cluster with different values, as happens with the
’bgcolor’ attribute in the instance /table[bgcolor=’red’]/tr/td[bgcolor=’green’].
Therefore, each feature name contains an index of the block it belongs to, for

5

30 Michal Ceresna

example ’BL3_href_val’. DOM attributes inside of the same block are treated
as non-repeating. That means, their values are unified into a common set.

Not all HTML attributes have equal semantics. Therefore, it does not make
sense to map every DOM attribute one-to-one into a training feature. For exam-
ple, our feature selection considers only attributes that have rendering effect in
HTML. Because the user highlights the interested instances inside of a rendered
Web page, she can not distinguish DOM nodes that differ only with an attribute
that does not influent rendering. Therefore, we sorted the HTML attributes into
three categories (Table 1), depending on their rendering effect.

none by presence by each value
alt multiple align
codebase readonly border
id checked color

Table 1. HTML attributes and their influence of rendering

The list of possible values for each feature is constructed in the following way.
Possible values of a feature constructed from a DOM attribute with rendering
influence by presence are ’present’ and ’absent’. Set of possible values for a
feature constructed from a DOM attribute with rendering changed by each value
is union of all values of this attribute collected in the current block over all
example instances.

Each feature has two additional possible values with special meaning. The
’ !missing’ value is used during building of the training data to express that the
current example instance does not contain a particular attribute in a block,
while other instances contain this feature. The value ’ !other’ is used during the
extraction process to express that an instance has a particular attribute, but
with a value that has not been known during the training process.

We extended our feature list also with ontology-based features know already
from other wrapping systems [1]. From content of the text nodes we compute
boolean features of syntactic concepts such as date, year, number, currency and
semantic concepts such as city, country, continent. List of possible values for
these concept-based features is ’yes’ and ’no’. The Figure 5a contains the features
chosen for training from the example in the Figure 3.

3.3 Training attribute classifier

Building of the training set is done by iterating over all instances in the clus-
ter and computing values of the previously constructed features. As indicated
already earlier, there is a case possible, when value of a feature can not be com-
puted for an example instance. This may happen, when a DOM element in the
example instances does not contain the needed DOM attribute. In that case the
special value ’ !missing’ is used.

6

Interactive Learning of HTML Wrappers Using Attribute Classification 31

a) b)

Fig. 5. a) Feature list for example instances b) Training set constructed from example
instances

Moreover, a special target feature called ’extract*’ is added to each training
example. The possible values of that feature are ’yes’ or ’no’, depending whether
the processed example instance is a positive or a negative example. The Figure
5b contains the training set constructed from the example in Figure 3.

Prediction of the target feature ’extract*’ is then trained by the decision
tree classifier. The constructed list of features and the dataset are fed into the
training algorithm that builds the classifier. For implementation of our learning
algorithm we used the Weka package [14]. Using its ID3 decision tree learning
algorithm we get the following classifier:

Cluster1 ID3: Cluster2 ID3 :
BL3_bg_color != ’ !missing’ : yes BL5_text_isCity = ’yes’ : yes

4 Experimental results and Conclusions

For initial experiments with our system have been chosen five example sites,
which were already used before for evaluation of other wrapper induction algo-
rithms. The Table 2 shows the small number of positive and negative example
instances the human wrapper designer had to enter before the correct filters
for a pattern were induced. Comparing to the previous methods for example in
[1], construction of wrappers using this approach significantly reduces the effort
required by the human designer. Thus, it accelerates the wrapper creation and
enables less experienced users to create the wrapper.

Experiments with our current implementation show that further improve-
ments are possible. Therefore, we investigate possibilities of

– better handling of tree regions - that is, instances formed from a sequence
of neighbourhood tree elements.

– additional consideration of contextual “before/after” information, to capture
instances such as a “table” with an “image” somewhere before.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web information extraction
with Lixto. In The VLDB Journal, pages 119–128, 2001.

7

32 Michal Ceresna

Source URL Pattern Examples
Amazon Camera List http://www.amazon.com/

exec/obidos/tg/browse/...
Camera 1+2

Google Search http://www.google.at/search?... SearchResult 2+0
Yahoo Email Search http://email.people.yahoo.com/

py/psEmailSearch.py?...
PeopleEntry 1+0

IMDb Title Details http://imdb.com/title/... Actor 1+0
IMDb Title Details http://imdb.com/title/... Director 1+3
Excite Weather http://my.excite.com/weather/

obs.jsp?...
Forecast 2+1

Table 2. Evaluation of the pattern induction, number of necessary positive and nega-
tive examples

2. J. Carme, A. Lemay, and J. Niehren. Learning node selecting tree transducer from
completely annotated examples. In ICGI, pages 91–102, 2004.

3. M. Ceresna and G. Gottlob. Query based learning of XPath fragments. In Proceed-
ings of the Dagstuhl Seminar on Machine Learning for the Semantic Web, 2005.

4. R. Gilleron, P. Marty, M. Tommasi, and F. Torre. Statistical classification for
wrapper induction. In Proceedings of the Dagstuhl Seminar on Machine Learning
for the Semantic Web, 2005.

5. B. Goetz. Easy screen-scraping with XQuery, 2005. Published on http://www-
128.ibm.com/developerworks/java/library/j-jtp03225.html.

6. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In Proc. of the 28th International Conference on Very Large Data Bases
(VLDB 2002), 2002.

7. J. Hammer, H. Garcia-Molina, J. Cho, A. Crespo, and R. Aranha. Extracting
semistructured information from the Web. In Proceedings of the Workshop on
Management for Semistructured Data, 1997.

8. N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper induction for informa-
tion extraction. In Intl. Joint Conference on Artificial Intelligence (ĲCAI), pages
729–737, 1997.

9. A. McCallum and D. Jensen. A note on the unification of information extraction
and data mining using conditional-probability, relational models. In Proceedings
of the Dagstuhl Seminar on Machine Learning for the Semantic Web, 2005.

10. M. Michelson and C. A. Knoblock. Semantic annotation of unstructured and
ungrammatical text. In Proceedings of the Dagstuhl Seminar on Machine Learning
for the Semantic Web, 2005.

11. W. Recommendation. Document Object Model (DOM) Level2 HTML specifica-
tion, 2003. Published on http://www.w3.org/TR/DOM-Level-2-HTML.

12. K.-C. Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, 1979.
13. K. Technologies. Kapowtech Robosuite software, 2000-2005. Homepage on

http://www.kapowtech.com.
14. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools with

Java implementations. Morgan Kaufmann, San Francisco, 2000.

8

