
A Signaling Game Approach to Databases Querying

Ben McCamish1, Arash Termehchy1, Behrouz Touri2, and Eduardo Cotilla-Sanchez1

1 School of Electrical Engineering and Computer Science, Oregon State University
2 Department of Computer Science, University of Colorado, Boulder

1 Introduction

Most users do not know the structure or content of databases and cannot precisely ex-
press their queries. Hence, it is challenging for database query interfaces to understand
and satisfy users’ information needs, i.e., intents. Ideally, we would like the user and
query interface to establish a mutual understanding: the query interface understands
how the user expresses her intents and/or the user learns to formulate her queries pre-
cisely. Researchers have proposed methods to achieve such a mutual understanding
between users and databases [1, 3]. Current methods, however, mainly improve the mu-
tual understanding of a user and a database for a single information need. Nevertheless,
many users explore a database to find answers for various information needs poten-
tially over a long period of time. Moreover, current approaches assume that the way a
user expresses her intents remains generally intact over her course of interaction with
the database. However, users may leverage their experience from previous interactions
with the database to express their future intents more precisely.

We propose a novel framework that models database querying as a game between
two active and potentially rational agents: the user and query interface. The common
goal of the players is to reach a mutual understanding on expressing intents in the form
of queries. The players may reach this goal through communication: the user informs
database of her intents by submitting queries, the database returns some results for the
queries, and user provides some feedback on how much the returned results match her
intents, e.g., by clicking on some desired answer(s). Moreover, the user may modify
her query to better reflect her intent after exploring some answers. Both players receive
some reward based on the degree by which the returned answers satisfy the intents
behind queries. This interaction may reach some stable states, i.e., equilibria, where
neither the database receives any reward by changing the way it answers queries nor
the user has any incentive to change the way she expresses her intents. One obvious
and desirable equilibrium is the state in which database precisely pinpoints the intent
behind each query. Nevertheless, we show that the game has other equilibria, which
are less desirable. We also propose a query answering algorithm for the database side,
which lead to a non-decreasing reward for the user and database over the course of
their interaction. We believe that our framework provides the basic tools to identify
the equilibria of the interactions between users and databases in different settings and
design methods to lead the interactions to more desirable equilibria.

2 Framework

Intent: An intent represents an information need sought after by a user. We assume that
each intent is a query in a fixed query language, e.g., conjunctive queries. The set of
possible intents is infinite. In practice a user has only a finite number of information
needs in a finite period of time. Hence, we assume the number of intents for a particular
user is finite. We index each intent over database instance I by 1 ≤ i ≤ m.
Query: Because the user is not able to formulate her information need e, she submits
query s 6= e to the database instead. Of course, the user still expects that the query
interface returns the answers of intent e for s. A user in practice submits a finite number
of queries in a finite time period. Hence, we assume that the set of all queries submitted
by a user is finite. We index each query over the database instance I by 1 ≤ j ≤ n.
Result: Given a query s over a database instance I , the query interface generally returns
a set of tuples as the response to s. An obvious choice is to return s(I). Because the
query interface knows that the input query may not precisely specify the user’s intent, it
also considers alternative answers to satisfy the information need behind the query [1].
Strategies: A user strategy, P , is a m× n row-stochastic matrix from the set of intents
to queries. Each strategy of the databaseQis a n×o row-stochastic matrix from queries
to results. Each pair (P,Q) is called a strategy profile.
Rewards: This interaction between the database and user can be modeled as a signaling
game, with identical interests, played between the user and the database. Given that the
query interface returns result l for intent e, we need some standard metrics to measure
how effectively l answers e. We use standard effectiveness metric precision to measure
the user satisfaction given a returned set of tuples. li represents the result tuple set
returned after querying the database with intent ei. The precision of a result l for intent
e over database I , denoted as p(e, l), is the fraction of its tuples that are in e(I). Our
framework can be extended for other effectiveness metrics. We define the payoff as

u(P,Q) =

m∑
i=1

πi

n∑
j=1

Pij

o∑
`=1

Qj` p(ei, l`). (1)

This function is an expected payoff of the interaction between the user and query inter-
face when the user maps a (random) intent ei to a query sj with probability Pij and the
database maps the query sj to result l` with probability Qj`. π is the prior probability
over intents and p is precision.
Example 1: Consider a database about universities with schema U(name, abbreviation,
state, ranking). Table 1(a) and (b) show a user’s intents and the queries she submits
to the database to express these intents, respectively. Table 1 (c) and (d) illustrate two
possible strategy profiles for these sets of intents and queries. For instance, given the
strategy profile shown in Table 1 (c), if the user wanted to find the ranking for Michi-
gan State University, i.e., intent e2, she submits query s1 that precisely represent this
information need. If the database receives query s1, it returns the tuples in the database
that satisfy s1, i.e., l2. However, if the user wants to find the rankings of the Mississippi
State University and Missouri State University, she submits query s2 due to her lack
of knowledge about the database content. Given query s2, the query interface returns

the rankings of Mississippi State University and Missouri State University with equal
probability.

Table 1: Intents, queries, and strategies for exploring the database about universities.
(a) Intents

Intent# Intent
e1 ans(y)← U(x, ‘MSU ’, ‘MS’, y)
e2 ans(y)← U(x, ‘MSU ’, ‘MI’, y)
e3 ans(y)← U(x, ‘MSU ’, ‘MO’, y)

(b) Queries

Query# Query
s1 ans(y)← U(x, ‘MSU ’, ‘MI’, y)
s2 ans(y)← U(x, ‘MSU ,z, y)

(c) A strategy profile

s1 s2
e1 0 1
e2 1 0
e3 0 1

l1 l2 l3
s1 0 1 0
s2 0.5 0 0.5

(d) Another strategy profile

s1 s2
e1 0 1
e2 0 1
e3 0 1

l1 l2 l3
s1 0 1 0
s2 0 1 0

3 Equilibria of The Game

A Nash equilibrium for a game is a strategy profile where the query interface and user
will not do better by unilaterally deviating from their strategies. A Nash equilibrium
represents a stable state in the interaction between the user and database.

Definition 1. Strategy profile (P,Q) is a Nash equilibrium iff u(P,Q) ≥ u(P ′, Q) for
all P ′ 6= P and u(P,Q) ≥ u(P,Q′) for all Q′ 6= Q.

If the intents in Table 1 have equal prior probabilities, the strategy profile in Table 1 (c) is
a Nash equilibrium. None of the players achieve a better payoff by unilaterally changing
their strategies.

The strategy profile in Table 1 (c) provides the highest payoff for the user and
database system given the intents and queries in Table 1 (a) and Table 1 (b). However,
some Nash equilibria may not provide high payoffs. For instance, Table 1 (d) depicts
another strategy profile for the set of intents and queries in Table 1 (a) and Table 1 (b).
In this strategy profile, the user has a little knowledge about the database content and
expresses al ofl her intents using a single query s2, which asks for the ranking of univer-
sities whose abbreviations are MSU. Given query s2, the query interface always returns
the ranking of Michigan State University. Obviously, the query interface always returns
the non-relevant answers for the intents of finding the rankings of Mississippi State
University and Missouri State University. If all intents have equal prior probabilities,
this strategy profile is a Nash equilibrium. For example, the user will not get a higher
payoff by increasing her knowledge about the database and using query s1 to express
intent e2. Clearly, the payoff of this strategy profile is less than the one of the strategy
profile in Table 1 (c). Nevertheless, the user and the query interface do not have any
incentive to leave this undesirable stable state once reached and will very likely stay in
this state.

A Strict Nash Equilibrium is a strategy profile where neither party can unilaterally
change their strategies and receive the same or better payoff.

Definition 2. Strategy profile (P,Q) is a Strict Nash Equilibrium iff u(P,Q)> u(P ′, Q)
for all P ′ 6= P and u(P,Q) > u(P,Q′) for all Q′ 6= Q.

If we remove row e3 and column l3 from the user and database strategy in Table 1 (c)
respectively and change s2,l1 for the database strategy to 1, we are left with a strict
Nash. A strict Nash equilibrium is more stable than a Nash equilibrium.

4 An Adaptation Mechanism
After figuring out the desirable states of the game, one may want to design algorithms
for the database side which lead the game to such states. In many relevant applications,
the user’s learning is happening in a much slower time-scale compared to the learning of
the database. So, one can assume that the user’s strategy is fixed compared to the time-
scale of the database adaptation. As in [2], we use Roth-Erev reinforcement learning
mechanism for the database adaption as follows.

a. Let R(0) > 0 be an n× o initial reward matrix whose entries are strictly positive.
b. Let Q(0) be the initial database strategy with Qj`(0) =

Rj`(0)∑o
`=1 Rj`(0)

> 0 for all
j ∈ [n] and ` ∈ [o].

c. For iterations t = 1, 2, . . ., do
i. If the user’s query at time t is s(t), return a result L(t):

P (L(t) = i′ | s(t)) = Qs(t)i′(t).

ii. User gives a reward rii′ given that i is the intent of the user at time t. Then, set

Rj`(t+ 1) =

{
Rj`(t) + ri` if j = s(t) and ` = i′

Rj`(t) otherwise . (2)

iii. Update the database strategy by

Qji(t+ 1) =
Rji(t+ 1)∑o
`=1Rj`(t+ 1)

, (3)

for all j ∈ [n] and i ∈ [o].

Let u(P,Q(t)) denote the payoff in interaction t according to in Equation (1). A random
process {X(t)} is a submartingale if it is absolutely integrable (i.e. E(|X(t)|) < ∞
for all t) and E(X(t + 1) | Ft) ≥ X(t), where Ft is the σ-algebra generated by
X1, . . . , Xt. In other words, the expected value ofX(t+1) given the past, is not strictly
less than the value of X(t).

Theorem 1. The sequence of u(P,Q(t)) is a submartingale.

Hence, the proposed reinforcement learning rule stochastically improves the efficiency
of communication between the database and user. It is an interesting future work to
explore whether this algorithm will converge to a globally optimal payoff.

References

1. Fagin, R., Kimelfeld, B., Li, Y., Raghavan, S., Vaithyanathan, S.: Understanding Queries in a
Search Database System. In: PODS (2010)

2. Hu, Y., Skyrms, B., Tarrès, P.: Reinforcement learning in signaling game. arXiv preprint
arXiv:1103.5818 (2011)

3. Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: Snipsuggest: Context-aware auto-
completion for sql. PVLDB 4(1) (2010)

