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Abstract. The usual approach to producing a parallel solution to a
computational problem is to find a way to use the Divide & Conquer
paradigm in order to have processors acting on their own data so they can
all be scheduled in parallel. MapReduce is an example of this approach.
We present an alternative program schema that can exploit dynamic
pipeline parallelism without having to deal with replication factors. We
present the schema through an example: counting triangles in graphs.
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1 Introduction

With the emergence of commodity multicore architectures, exploiting tightly-
coupled parallelism has become increasingly important. Most parallelization ef-
forts are addressed to applications that compute with large amounts of data in
memory and in general have a regular behavior.

Frameworks that implement MapReduce are a great success. This may be in
part because having a framework helps in testing the goodness of the solution,
but also because implementations deal with errors and because the programmer
needn’t be concerned with deployment in parallel architectures as the implemen-
tation takes care of this.

We present an alternative program schema that can exploit dynamic pipeline
parallelism without having to deal with replication factors. Applications using
a sequence of processes working in parallel without requiring large amounts of
local memory are suitable for both multicore and distributed architectures.

We present the schema through an example: counting triangles in graphs.
Counting triangles, having as input an unordered sequence of edges, is only one
example of the type of problem solvable with this algorithmic schema. Other
graph problems include: Elimination of duplicate edges, finding connected com-
ponents, and finding small circuits, among others.

This is an extended abstract of our paper [1] in which can be found a small
example of our algorithm using a NiMo implementation together with a formal
description and proof of this type of algorithm.



2 Approaches to solving the problem

Various approaches to parallelizing algorithms for exact triangle counting are
found in the literature. [7] uses the MapReduce framework and [3] the hypercube
architecture. Both approaches use hashing functions on the vertex names to
partition the graph. Both have relatively high replication rate.

A divide and conquer approach is given in [2], using the BSP model to syn-
chronize the parallel workers and MPI to implement the algorithm.

From the input graph we construct a collection of subgraphs, of size equal
to the number of processors, such that triangles can be counted by counting
on each subgraph and accumulating the results. The improvement over [7] is
due to the fact that the latter generates a huge volume of intermediate data,
consisting of all possible 2-paths centered at each node. Our improvement over
[2] is that we do not collect in a single machine all nodes adjacent to a core (also
responsible or dominating) node, but only those that have not been collected by
some other responsible node. Furthermore, rather than doing preconditioning
in order to balance the workload, our dynamic scheduler is able to achieve this
based on the size of a set of adjacent nodes to each responsible node. In [4] a
sequential algorithm is presented where a dominating set of nodes is constructed
for dividing the graph into subgraphs. The constructed set is different from ours,
because it is based on the adjacency presentation of the input graph. In [4] the
use of the subgraphs results in a sequential iterative algorithm.

3 Streaming Model of Computation

In [5] we find a good survey of algorithms based on the streaming model of
computation.

We use the semi-streaming model of computation, where the input graph,
G = (V,E), is presented as a stream of edges (in any order), and the storage
space of an algorithm is bounded by ©(n polylog n).

We are particularly interested in algorithms that use only one pass over
the input, but for problems where this is probably insufficient, we also look at
algorithms using constant, or in some cases, logarithmically many passes.

One measure of amorphous data-parallelism is the number of active nodes
(fireable processes) that can be processed in parallel at each step of the algorithm
for a given input, assuming that:

— There is an unbounded number of processors,

— An activity takes one time step to execute,

— The system has perfect knowledge of neighborhood and ordering constraints
so that it only executes activities that can complete successfully, and

— A maximal set of activities, subject to neighborhood and ordering con-
straints, is executed at each step.

This is called the available parallelism at each step. A function plot showing
the available parallelism at each step of execution of an irregular algorithm



for a given input is called a parallelism profile. This gives an upper bound on
obtainable parallelism for the given solution.

4 The Algorithm

4.1 Notation

The input graph is denoted by G = (V, E), where V and FE are the sets of vertices
(nodes) and edges, respectively, with m = |E| edges and n = |V/| vertices labeled
using labels that can be compared for equality. We use the words node and vertex
interchangeably. We assume that the input graph is undirected, without loops or
multiple edges 3. If (u,v) € E, we say u and v are adjacent to each other. The set
of all nodes adjacent to v € V is denoted by N,, i.e., N, = {u € V|(u,v) € E}. A
triangle is a set of three nodes u, v, w € V such that there is an edge between each
pair of these three nodes, i.e., (u,v), (v,w), (w,u) € E. The number of triangles
containing node v (in other words, triangles incident on v) is denoted by T.
Notice that the number of triangles containing node v is the same as the number
of edges among the set of nodes adjacent to v, i.e., T,, = |{(u,w) € E|lu,w € N,}|.

4.2 Informal Algorithm presentation

We assume the input is a large graph given by an unordered enumeration of its
edges. We assume a non-oriented graph with no duplicated edges.

We use a two-round schema, first of all partitioning the graph building length
two paths, but only one of the three corresponding to a triangle, then identifying
and counting the triangles. We do not need to use a special data structure.

In [7] uses also the. The main difference is the way the possible two path are
identified and the program structure, also it compute all two paths.

But use the same principle of a single node being responsible for making sure
the triangle gets counted. In [6] this is obtained from knowledge of the degree of
each node. Dealing with graphs large enough to not fit in memory, this additional
knowledge requires an further traversal of the edges of the graph which is not
needed in our approach.

The algorithm we present is implemented in NiMo as a sequence of actors
(processes), communicating using three unbounded channels. Processes change
their role (mutate their behavior) when enough knowledge has been collected.
Initially there is a single actor.

An actor’s first role is to acquire an edge and become a process that is
“responsible” for this first node on the edge. The responsible actor receiving an
edge will collect in its memory the node if the edge is adjacent to its responsible
node. If the received edge is not adjacent to the responsible node, the actor
passes the edge to the next actor in the sequence. If there is no next actor, a
newly created actor is added to the sequence that will process the edge.

3 Oriented edges are a special case of the one treated here.



When there are no more edges in the first input, each actor changes role,
once again receiving the sequence of edges using the second input. The new
role is to count a triangle whenever the incoming edge forms a triangle with
the “responsible ” node and two adjacent ones i.e. both ends of the edge are
adjacent to the “responsible”. Whenever a process has received all the edges,
it reads the third input, that carries the total number of triangles identified so
far by its provider. It adds its own count, and passes its triangle count to its
neighbor and dies. The algorithm ends with no live processes and a single result:
the total number of triangles.

The I/0 complexity is O(m), The total memory needed is m and the internal
memory of each processor is bounded for the maximal degree of the nodes which
is bound by n. The number of processes created is the number of responsible
nodes and is bounded by n — 1.

5 Concluding Remarks

We have used the triangle counting problem on a graph described as a sequence
of edges as an example of a dynamic pipeline solution of problems. In the example
we see that a large amount of processors can be exploited, but the algorithm
is correct even in single processor semantics using a dynamic scheduler. The
solution can be regarded as a bucket-sorting method that separates the input set
into disjoint classes, but in our case the classes are created on the fly. Processes
in the pipeline change behavior as soon as enough data has been consumed.
In this approach data input is shared with computation, without the barriers
present in the BSP model of computation.
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