
Monadic Datalog Containment on Trees Using
the Descendant-Axis

André Frochaux and Nicole Schweikardt

Institut für Informatik, Humboldt-Universität zu Berlin
{frochaua,schweikn}@informatik.hu-berlin.de

Abstract. In their AMW’14-paper, Frochaux, Grohe, and Schweikardt
showed that the query containment problem for monadic datalog on
finite unranked labeled trees is Exptime-complete when (a) considering
unordered trees using the child-axis, and when (b) considering ordered
trees using the axes firstchild, nextsibling, and child. Furthermore, when
allowing to use also the descendant-axis, the query containment problem
was shown to be solvable in 2-fold exponential time, but it remained
open to determine the problem’s exact complexity in presence of the
descendant-axis. The present paper closes this gap by showing that, in
the presence of the descendant-axis, the problem is 2Exptime-hard.

1 Introduction

The query containment problem (QCP) is a fundamental problem that has been
studied for various query languages. Datalog is a standard tool for expressing
queries with recursion. From Cosmadakis et al. [5] and Benedikt et al. [2] it
is known that the QCP for monadic datalog queries on the class of all finite
relational structures is 2Exptime-complete.

Restricting attention to finite unranked labeled trees, Gottlob and Koch [10]
showed that on ordered trees the QCP for monadic datalog is Exptime-hard and
decidable, leaving open the question for a tight bound. This gap was closed by
Frochaux, Grohe, and Schweikardt in [8] by giving a matching Exptime upper
bound for the QCP for monadic datalog on ordered trees using the axes firstchild,
nextsibling, and child. Similar results were obtained in [8] also for unordered finite
labeled trees: in this setting, the QCP is Exptime-complete for monadic datalog
queries on unordered trees using the child -axis.

For the case where queries are allowed to also use the descendant-axis, [8]
presented a 2-fold exponential time algorithm for the QCP for monadic datalog
on (ordered or unordered) trees. Determining the problem’s exact complexity in
the presence of the descendant-axis, however, was left open.

The present paper closes the gap by proving a matching 2Exptime lower
bound (both, for ordered and for unordered trees). This gives a conclusive answer
to a question posed by Abiteboul et al. in [1], asking for the complexity of the
QCP on unordered trees in the presence of the descendant-axis. Our 2Exptime-
hardness proof for ordered trees is by a reduction from a 2Exptime-hardness

result of [3] for the validity of conjunctive queries w.r.t. schema constraints. For
obtaining the 2Exptime-hardness on unordered trees, we follow the approach
of [3] and construct a reduction from the 2Exptime-complete word problem for
exponential-space bounded alternating Turing machines [4].

The remainder of the paper is organised as follows. Section 2 fixes the basic
notation. Section 3 presents a 2Exptime lower bound for the QCP on ordered
trees using the axes firstchild, nextsibling, root, leaf, lastsibling, child, descendant.
Section 4 is devoted to the 2Exptime lower bound for the QCP on unordered
trees using only the axes child and descendant. We conclude in Section 5.

Due to space limitations, many proof details had to be deferred to the paper’s
full version.

2 Trees and Monadic Datalog (mDatalog)

Throughout this paper, Σ will always denote a finite non-empty alphabet.
By N we denote the set of non-negative integers, and we let N>1 := N \ {0}.

Relational Structures. As usual, a schema τ consists of a finite number of
relation symbols R, each of a fixed arity ar(R) ∈ N>1. A τ -structure A consists of
a finite non-empty set A called the domain of A, and a relation RA ⊆ Aar(R) for
each relation symbol R ∈ τ . It will often be convenient to identify A with the set
of atomic facts of A, i.e., the set atoms(A) consisting of all facts R(a1, . . . , aar(R))
for all relation symbols R ∈ τ and all tuples (a1, . . . , aar(R)) ∈ RA.

If τ is a schema and ` is a list of relation symbols, we write τ ` to denote
the extension of the schema τ by the symbols in `. Furthermore, τΣ denotes the
extension of τ by new unary relation symbols labelα, for all α ∈ Σ.

Unordered Trees. An unordered Σ-labeled tree T = (V T , λT , ET) consists
of a finite non-empty set V T of nodes, a function λT : V T → Σ assigning to each
node v of T a label λ(v) ∈ Σ, and a set ET ⊆ V T × V T of directed edges such
that the directed graph (V T , ET) is a rooted tree where edges are directed from
the root towards the leaves. We represent such a tree T as a relational structure
of domain V T with unary and binary relations: For each label α ∈ Σ, labelα(x)
expresses that x is a node with label α; child(x, y) expresses that y is a child of
node x; root(x) expresses that x is the tree’s root node; leaf(x) expresses that
x is a leaf; and desc(x, y) expresses that y is a descendant of x (i.e., y is a child
or a grandchild or . . . of x). We denote this relational structure representing T
by Su(T), but when no confusion arises we simply write T instead of Su(T).

The queries we consider for unordered trees are allowed to make use of at
least the predicates labelα and child. We fix the schema τu := { child }.

Ordered Trees. An ordered Σ-labeled tree T = (V T , λT , ET , orderT) has
the same components as an unordered Σ-labeled tree and, in addition, orderT

fixes for each node u of T a strict linear order of all the children of u in T .
To represent such a tree as a relational structure, we use the same domain and

the same predicates as for unordered Σ-labeled trees, along with three further
predicates fc (“first-child”), ns (“next-sibling”), and ls (“last sibling”), where

fc(x, y) expresses that y is the first child of node x (w.r.t. the linear order of the
children of x induced by orderT); ns(x, y) expresses that y is the right sibling
of x (i.e., x and y have the same parent p, and y is the immediate successor of
x in the linear order of p’s children given by orderT); and ls(x) expresses that
x is the rightmost sibling (w.r.t. the linear order of the children of x’s parent
given by orderT). We denote this relational structure representing T by So(T),
but when no confusion arises we simply write T instead of So(T).

The queries we consider for ordered trees are allowed to make use of at
least the predicates labelα, fc, and ns. We fix the schemas τo := { fc, ns }
and τGK := τ root,leaf ,lso . In [10], Gottlob and Koch used τGK,Σ-structures to
represent ordered Σ-labeled trees.

Datalog. We assume that the reader is familiar with the syntax and seman-
tics of datalog (cf., e.g., [6, 10]). Predicates that occur in the head of some rule of
a datalog program P are called intensional, whereas predicates that only occur
in the body of rules of P are called extensional. By idb(P) and edb(P) we denote
the sets of intensional and extensional predicates of P, resp. We say that P is
of schema τ if edb(P) ⊆ τ . We write TP to denote the immediate consequence
operator associated with a datalog program P. Recall that TP maps a set C of
atomic facts to the set of all atomic facts that are derivable from C by at most
one application of the rules of P. The monotonicity of TP implies that for each
finite set C, the iterated application of TP to C leads to a fixed point, denoted
by T ωP (C), which is reached after a finite number of iterations.

Monadic datalog queries. A datalog program belongs to monadic datalog
(mDatalog, for short), if all its intensional predicates have arity 1.

A unary monadic datalog query of schema τ is a tuple Q = (P, P) where P is
a monadic datalog program of schema τ and P is an intensional predicate of P.
P and P are called the program and the query predicate of Q. When evaluated
in a finite τ -structure A that represents a labeled tree T , the query Q results in
the unary relation Q(T) := {a ∈ A : P (a) ∈ T ωP (atoms(A)) }.

The Boolean monadic datalog query QBool specified by Q = (P, P) is the
Boolean query with QBool(T) = yes iff the tree’s root node belongs to Q(T).

The size ||Q|| of a monadic datalog query Q is the length of Q = (P, P)
viewed as a string over a suitable alphabet.

Expressive power of monadic datalog on trees. On ordered Σ-labeled
trees represented as τGK,Σ-structures, monadic datalog can express exactly the
same unary queries as monadic second-order logic [10] — for short, we will say
“mDatalog(τGK) = MSO(τGK) on ordered trees”. Since the child and desc

relations are definable in MSO(τGK), mDatalog(τGK) = mDatalog(τchild,descGK)
on ordered trees. Moreover, for (ordered or unordered) trees, every monadic
Datalog query that uses the desc-axis can be rewritten in 1-fold exponential
time into an equivalent monadic datalog query which uses the child-axis, but
not the desc-axis (see the proof of Lemma 23 in the full version of [8]).

Using the monotonicity of the immediate consequence operator, one obtains
that removing any of the predicates root, leaf , ls from τGK strictly decreases the
expressive power of mDatalog on ordered trees (see [9]). By a similar reasoning

one also obtains that on unordered trees, represented as τ root,leaf ,descu,Σ -structures,
monadic datalog is strictly less expressive than monadic second-order logic, and
omitting any of the predicates root, leaf further reduces the expressiveness of
monadic datalog on unordered trees [9].

The Query Containment Problem (QCP). Let τΣ be one of the schemas
used for representing (ordered or unordered) Σ-labeled trees as relational struc-
tures. For two unary queries Q1 and Q2 of schema τΣ we write Q1 ⊆ Q2 to
indicate that for every Σ-labeled tree T we have Q1(T) ⊆ Q2(T). Similarly, if
Q1 and Q2 are Boolean queries of schema τΣ , we write Q1 ⊆ Q2 to indicate that
for every Σ-labeled tree T , if Q1(T) = yes then also Q2(T) = yes. We write
Q1 6⊆ Q2 to indicate that Q1 ⊆ Q2 does not hold. For a schema τ , the query
containment problem (QCP) for mDatalog(τ) on finite labeled trees receives as
input a finite alphabet Σ and two (unary or Boolean) mDatalog(τΣ)-queries Q1

and Q2, and the task is to decide whether Q1 ⊆ Q2. From [8] we know:

Theorem 1 (Frochaux et al. [8]) The QCP for mDatalog(τ root,leaf ,descu) on

unordered trees and for mDatalog(τchild,descGK) on ordered trees can be solved in
2-fold exponential time.

3 2Exptime-hardness on Ordered Trees

Theorem 2 The QCP for Boolean mDatalog(τchild,descGK) on finite labeled or-
dered trees is 2Exptime-hard.

The proof is by a reduction based on a 2Exptime-hardness result of Björklund,
Martens, and Schwentick [3]. For stating their result, we recall some nota-
tion used in [3]. A nondeterministic (unranked) tree automaton (NTA) A =
(Σ,S,∆, F) consists of an input alphabet Σ, a finite set S of states, a set F ⊆ S
of accepting states, and a finite set ∆ of transition rules of the form (s, α)→ L,
where s ∈ S, α ∈ Σ, and L is a regular string-language over S. A run of the
NTA A on a ordered Σ-labeled tree T is a mapping ρ : V T → S such that the
following is true for all nodes v of T , where α denotes the label of v in T : if v
has n > 0 children u1, . . . , un (in order from the left to the right), then there
exists a rule (s, α) → L in ∆ such that ρ(v) = s and wv ∈ L, for the string
wv := ρ(u1) · · · ρ(un). In particular, if v is a leaf, then there must be a rule
(s, α)→ L in ∆ such that ρ(v) = s and ε ∈ L, where ε denotes the empty string.

A run ρ of A on T is accepting, if T ’s root note v is labeled with an accepting
state of A, i.e., ρ(v) ∈ F . A finite ordered Σ-labeled tree T is accepted by A, if
there exists an accepting run of A on T . We write L(A) to denote the language
of A, i.e., the set of all finite ordered Σ-labeled trees that are accepted by A.

To present an NTA A = (Σ,S,∆, F) as an input for an algorithm, the string-
languages L that occur in the right-hand side of rules in ∆ are specified by NFAs
AL = (ΣL, QL, δL, qL, FL), whose input alphabet is ΣL := S, and where QL is a
finite set of states, δL ⊆ (QL×ΣL×QL) is a transition relation, qL ∈ QL is the
initial state, and FL ⊆ QL is the set of accepting states of AL. The size of AL is

||AL|| := |QL| + |δL|, and the size of A is the sum of |Σ|, |S|, |∆|, and ||AL||, for
all L ∈ strL(A), where strL(A) is the set of all string-languages L that occur in
the right-hand side of a rule in ∆.

In [3], NTAs are used to describe schema information. A Boolean query Q
is said to be valid with respect to an NTA A if Q(T) = yes for every ordered
Σ-labeled tree T ∈ L(A). The particular queries of interest here are Boolean
CQ(child,desc) queries, i.e., Boolean conjunctive queries of schema τdescu,Σ =
{child,desc} ∪ {labelα : α ∈ Σ}, for a suitable alphabet Σ. The problem
“validity of Boolean CQ(child,desc) w.r.t. a tree automaton” receives as input
a Boolean CQ(child,desc) query Q and an NTA A, and the task is to decide
whether Q is valid with respect to A.

Theorem 3 (Björklund et al. [3]) Validity of Boolean CQ(child,desc) w.r.t.
a tree automaton is 2Exptime-complete.

Our proof of Theorem 2 is via a polynomial-time reduction from the problem
validity of Boolean CQ(child,desc) w.r.t. a tree automaton to the QCP for

Boolean mDatalog(τchild,descGK) on finite labeled ordered trees.
Let QCQ be a Boolean CQ(child,desc)-query, and let A be an NTA with

input alphabet Σ. We translate QCQ into an equivalent mDatalog(τdescu,Σ)-query
Q′CQ = (P, P): If QCQ is of the form Ans()← R1(u1), . . . , R`(u`) for relational
atoms R1(u1), . . . , R`(u`), we choose an arbitrary variable x that occurs in at
least one of these atoms, we use a new unary idb-predicate P , and we let P
be the program consisting of the two rules P (x) ← R1(u1), . . . , R`(u`) and
P (x)← child(x, y), P (y).

Then, for every ordered Σ-labeled tree T we have Q′CQ,Bool(T) = yes iff
QCQ(T) = yes. The following Lemma 4 constructs, in time polynomial in the
size of A, an mDatalog(τchildGK,Σ)-query QA which is equivalent to A, i.e., for every
ordered Σ-labeled tree T we have QA,Bool(T) = yes iff T ∈ L(A).

Note that QCQ is valid w.r.t. A if, and only if, QA,Bool ⊆ Q′CQ,Bool. Thus, we
obtain the desired polynomial-time reduction, showing that the QCP for Boolean
mDatalog(τchild,descGK) on finite ordered Σ-labeled trees inherits the 2Exptime-
hardness from the problem “validity of Boolean CQ(child,desc) w.r.t. a tree
automaton”. All that remains to finish the proof of Theorem 2 is to prove the
following Lemma 4.

Lemma 4 For every NTA A = (Σ,S,∆, F) there is an mDatalog(τchildGK,Σ)-query
Q = (P, P), such that for every finite ordered Σ-labeled tree T we have QBool(T) =
yes iff T ∈ L(A). Furthermore, Q is constructible from A in time polynomial in
the size of A.

Proof. We construct a monadic datalog program P which, for every node v of T ,
computes information on all states that A can assume at node v, i.e., all states
s ∈ S for which there is a run ρ of A on the subtree of T rooted at v, such that
ρ(v) = s. To this end, for every state s ∈ S, we will use an idb-predicate s.
The query QBool will accept an input tree T if there is an accepting state s ∈ F

such that s(rootT) ∈ T ωP (T), where rootT denotes the root of T . The program
P is constructed in such a way that it performs a generalised version of the
well-known powerset construction.

Recall that the transition rules of A are of the form (s, α)→ L, where s ∈ S,
α ∈ Σ, and L is a regular string-language over S, specified by an NFA AL =
(ΣL, QL, δL, qL, FL) with ΣL = S and δL ⊆ (QL×ΣL×QL). W.l.o.g., we assume
that the state sets of all the NFAs are mutually disjoint, and disjoint with S.

To emulate the standard powerset construction of the NFA AL, we use an
idb-predicate q for every state q ∈ QL, and an extra idb-predicate AccL. If
u1, . . . , un are the children of a node v in an input tree T , the NFA AL processes
the strings over alphabet S that are of the form s1 · · · sn, where si is a state that
A can assume at node ui (for every i ∈ {1, . . . , n}). We start by letting PL := ∅
and then add to PL the following rules: For the initial state qL of AL, consider
all s ∈ S and q ∈ QL such that (qL, s, q) ∈ δL, and add to PL the rule

q(x) ← fc(y, x), s(x) .

Afterwards, for every transition (q, s, q′) ∈ δL, add to PL the rule

q′(x′) ← q(x), ns(x, x′), s(x′) .

Finally, for every accepting state q ∈ FL of AL, add to PL the rule

AccL(x) ← ls(x), q(x) .

Clearly, the program PL can be constructed in time polynomial in ||AL||.
Now, we are ready to construct the monadic datalog program P that simu-

lates the NTA A. We start by letting P be the disjoint union of the programs PL,
for all L ∈ strL(A). The computation of A on an input tree T starts in the leaves
of T . Thus, to initiate the simulation of A, we consider every rule (s, α)→ L in
∆, where ε ∈ L.1 For each such rule, we add to P the rule

s(x) ← labelα(x), leaf(x) .

Note that for each L ∈ strL(A), the program PL ensures that every last sibling
un of a node v will be marked by AccL(un) iff the states of A assigned to un and
its siblings form a string in L. To transfer this information from the last sibling
to its parent node, we add to P the rule

childAccL(y) ← child(y, x), ls(x), AccL(x) ,

where childAccL is a new idb-predicate, for every L ∈ strL(A).
Afterwards, we consider every rule (s, α)→ L in ∆, and add to P the rule

s(x) ← childAccL(x), labelα(x) .

Finally, to test if A accepts an input tree T , we add rules to test whether T ’s
root is assigned an accepting state of A. To this end, we consider every accepting
state s ∈ F of A and add to P the rule

P (x) ← root(x), s(x) .

This finishes the construction of the program P and the query Q = (P, P).
Clearly, P is a monadic datalog program of schema τchildGK,Σ , and Q can be con-
structed in time polynomial in ||A||. It is not difficult, but somewhat tedious, to

1 Note that “ε ∈ L ?” can be checked by simply checking whether qL ∈ FL.

verify that, as intended by the construction, indeed for every finite ordered Σ-
labeled tree T we have QBool(T) = yes if, and only if, there exists an accepting
run of the NTA A on T . This completes the proof of Lemma 4. ut

4 2Exptime-hardness on Unordered Trees

Our next aim is to transfer the statement of Theorem 2 to unordered trees.
Precisely, we will show the following.

Theorem 5 The QCP for Boolean mDatalog(τdescu) on finite labeled unordered
trees is 2Exptime-hard.

For proving Theorem 5, we cannot directly build on Björklund et al.’s The-
orem 3, since their NTAs explicitly refer to ordered trees.

By constructing suitable reductions, we can show that proving Theorem 5
boils down to proving the following Theorem 6, which deals with the emptiness
problem on trees over a ranked alphabet.

For the remainder of this section, Σ′ will denote a ranked finite alphabet.
I.e., Σ′ is a finite set of symbols, and each symbol α ∈ Σ′ is equipped with
a fixed arity ar(α) ∈ N. An unordered ranked Σ′-labeled tree is an unordered
Σ′-labeled tree where each node labeled with symbol α ∈ Σ′ has exactly ar(α)
children. For a Boolean mDatalog(τdescu,Σ′)-query Q, we say that Q is unsatisfiable
by unordered ranked trees (in symbols: Q = ∅) if for every finite unordered
ranked Σ′-labeled tree T we have Q(T) = ∅. The emptiness problem for Boolean
mDatalog(τdescu,Σ′) on finite unordered ranked Σ′-labeled trees receives as input a

Boolean mDatalog(τdescu,Σ′)-query Q, and the task is to decide whether Q = ∅.
The main technical step needed for proving Theorem 5 is to prove the following.

Theorem 6 There is a ranked finite alphabet Σ′, such that the emptiness prob-
lem for Boolean mDatalog(τdescu,Σ′) on finite unordered ranked Σ′-labeled trees is
2Exptime-hard.

For the proof of Theorem 6, we can build on the approach used by Björklund
et al. for proving Theorem 3: As in [3], we proceed by a reduction from the word
problem for exponential-space bounded alternating Turing machines, which is
known to be 2Exptime-complete [4]. The remainder of this section is devoted
to the proof of Theorem 6.

An alternating Turing machine (ATM) is a nondeterministic Turing machine
A = (Q,Σ, Γ, δ, q0) whose state space Q is partitioned into universal states Q∀,
existential states Q∃, an accepting state qa, and a rejecting state qr. The ATM’s
tape cells are numbered 0,1,2,. . . . A configuration of A is a finite string of the
form w1qw2 with w1, w2 ∈ Γ ∗ and q ∈ Q, representing the situation where the
ATM’s tape contains the word w1w2, followed by blanks, the ATM’s current state
is q, and the head is positioned at the first letter of w2. A configuration w1qw2

is a halting (universal, existential, resp.) configuration if q ∈ {qa, qr} (q ∈ Q∀,
q ∈ Q∃, resp.). W.l.o.g., no halting configuration has a successor configuration,

and every halting configuration is of the form qw. A computation tree TA of the
ATM A on input w ∈ Σ∗ is a tree labeled with configurations of A, such that the
root of TA is labeled by q0w, and for each node v of TA labeled by w1qw2,

– if q ∈ Q∃, then u has exactly one child, and this child is labeled with a
successor configuration of w1qw2,

– if q ∈ Q∀, then u has a child v for every successor configuration w′1q
′w′2, and

v is labeled by w′1q
′w′2,

– if q ∈ {qa, qr}, then u is a leaf of TA.

A computation tree is accepting if all its branches are finite and all its leaves are
labeled by configurations with state qa. The language L(A) of A is defined as the
set of all words w ∈ Σ∗, for which there exists an accepting computation tree
of A on w. W.l.o.g., we will assume that the ATM is normalized, i.e., every non-
halting configuration has precisely two successor configurations, each universal
step only affects the state of the machine, and the machine always alternates
between universal and existential states.

The proof of Theorem 6 proceeds by a reduction from the word problem for
exponential-space bounded ATMs A. The reduction itself will be done from an
ATM with empty input word. To this end, we construct, in the canonical way,
for the given exponential-space bounded ATM A and the given word w ∈ Σ∗

an ATM Aw that works in space exponential in the size of w and accepts the
empty word if, and only if, A accepts w. Since A is exponential-space bounded,
the non-blank portion of the ATM’s tape during a computation of Aw will never
be longer that 2n, where n is polynomial in the size |w| of the original input.

The crucial point of the reduction is to find an encoding of computation trees
of Aw on empty input, which can be verified by a mDatalog(τdescu,Σ′)-query that
can be constructed in time polynomial in the size of Aw. For this, it is necessary
to find a smart encoding of the tape inscription of length 2n. This encoding shall
allow to compare the content of every tape cell with the same tape cell of the
successor configuration. To achieve this, we adapt the encoding of Björklund et
al. [3]; in particular, we use their very elegant “navigation gadgets”.

We choose a fixed ranked finite alphabetΣ′ which, among other symbols, con-
tains a 0-ary symbol⊥, unary symbols r, p,m, 0, 1, binary symbols CTleft

∃ ,CTright
∃ ,

and 3-ary symbols CT∀ and s. Consider a computation tree TAw of a normalized
ATM Aw = (Q,Σ, Γ, δ, q0), see Figure 1.

We fix an arbitrary order on the children of nodes in TAw , such that every
universal node has a left child and a right child. The encoding T := enc(TAw)
is the ranked Σ′-labeled unordered tree obtained from TAw by replacing every
node v labeled w1qw2 with a Σ′-labeled ranked tree enc(tv), as follows:

– if v is universal, then the root of enc(tv) is labeled with CT∀,

– if v is existential, and v is the root of TAw or v is the left child of a universal

node, then the root of enc(tv) is labeled with CTleft
∃ ,

– if v is existential, and v is the right child of a universal node, then the root
of enc(tv) is labeled with CTright

∃ ,

(a) (b)

v1 w′
1q1w

′′
1

v2 w′
2q2w

′′
2

v3 w′
3q3w

′′
3

v5 w′
5q5w

′′
5v4w′

4q4w
′′
4

CT∀

CTright
∃r

r CT∀

r

CTleft
∃

CTright
∃

Fig. 1. (a) A part of a computation tree TAw , where the node v1 labeled by w′
1q1w

′′
1 is

universal, and its children are existential. The node v2 labeled by w′
2q2w

′′
2 is the right

child of v1. The node v2 has one child, the univeral node v3. (b) The replacement of v1
is a tree with a root node labeled by CT∀ and with three children, the first is labeled
by r and is the root of the subtree encoding the configuration in v1, the second is the
replacement for its left child, and the third is the replacment for its right child. The
obtained tree T := enc(TAw) is an unordered ranked Σ′-labeled tree.

– exactly one child of the root of enc(tv) is labeled by r (this will be the root
of the subtree that encodes the configuration at v), and

– for each child u of v in TAw , enc(tv) has a subtree enc(tu), which is the
encoded subtree of TAw obtained by the replacement of u.

The subtree γr rooted at the r-labeled child of the root of enc(tv), encodes the
configuration c := w1qw2 represented by node v in TAw . Since A is exponential-
space bounded, the tape inscription of c has length 6 2n. For representing c,
we use a full binary ordered tree of height n. The path from the root to a leaf
specifies the address of the tape cell represented by the leaf, and the leaf carries
information on the tape cell’s inscription and, in case that the tape cell is the
current head position, also information on the current state; all this information
is encoded by a suitable tape cell gadget that is attached to the “leaf”. The
number k of possible tape cell inscriptions (enriched with information on the
current state) is polynomial in ||Aw||. The nodes of the “full binary tree” are
called skeleton nodes and are labeled s. To ensure that the desired query Q can
be constructed in polynomial time, we attach to each skeleton node a navigation
gadget [3], which is a path of length 4. To indicate that a node is a left (resp.,
right) child, this gadget is labeled p−0−1−⊥ (resp., p−1−0−⊥). See Figure 2
for an illustration of the navigation gadget and the tape cell gadget.

Given an ATM A and a word w ∈ Σ∗, we construct in polynomial time
an mDatalog(τdescu,Σ′)-query Q = (P,Ans) such that QBool 6= ∅ iff there is an
accepting computation tree for Aw on ε, i.e., w ∈ L(A). The query Q consists of
two parts, one to verify that the structure of the input tree represents an encoded
computation tree, and the other to verify consistency with the ATM’s transition
relation. Details can be found in the paper’s full version. The particular choice
of the navigation gadgets ensures that Q can be constructed in time polynomial

(a) (b)

s

ss p

0

1

⊥

sleaf

p m

1

0

⊥

0

1

0

⊥

k
i

Fig. 2. (a) A skeleton node and its navigation gadget, indicating that the node is its
parent’s left child. (b) A skeleton node encoding a leaf of the configuration tree. This
leaf is its parent’s right child. It has a tape cell gadget m followed by k digits, the i-th
of which is labeled with 1 iff the tape cell’s inscription is represented by the number i.

in the size of A and w. The only point where we make essential use of the desc-
predicate is during the comparison of the cells by using the navigation gadgets.

5 Final Remarks

Along with the upper bound provided by Theorem 1, and since τdescu ⊆ τchild,desco ,
Theorem 5 implies the following corollary, which summarizes our main results.

Corollary 7 The QCP is 2Exptime-complete for Boolean mDatalog(τdescu) on
finite labeled unordered trees, and for Boolean mDatalog(τchild,desco) on finite
labeled ordered trees.

By applying standard reductions, the 2Exptime-completeness results of Corol-
lary 7 carry over from the QCP to the equivalence problem. When restrict-
ing attention to ranked trees over a ranked finite alphabet, the 2Exptime-
completeness results also carry over to the emptiness problem. For unranked
labeled trees, the emptiness problem for mDatalog(τchild,desco) is in 2Exptime,
but we currently do not have a matching 2Exptime-hardness result.

An overview of the currently known results is given in Table 1; for further
information and detailed proofs we refer to [7].
Table 1. Complexity of monadic datalog on finite labeled trees; N ⊆ {root, leaf} and
M ⊆ {root, leaf , ls, child}; “c” (“h”) means “complete” (“hard”).

τNu τMo τ
N∪{desc}
u τ

M∪{child,desc}
o τchild,desc

GK

Exptime-h & in 2Exptime unranked
Emptiness Exptime-c

2Exptime-c ranked

unranked
Equivalence Exptime-c 2Exptime-c

ranked

unranked
Containment Exptime-c 2Exptime-c

ranked

References

[1] Abiteboul, S., Bourhis, P., Muscholl, A., Wu, Z.: Recursive queries on trees and
data trees. In: Proc. ICDT’13. pp. 93–104 (2013)

[2] Benedikt, M., Bourhis, P., Senellart, P.: Monadic datalog containment. In: Proc.
ICALP’12. pp. 79–91 (2012)

[3] Björklund, H., Martens, W., Schwentick, T.: Optimizing conjunctive queries over
trees using schema information. In: Proc. MFCS’08. pp. 132–143 (2008), full
version: http://www8.cs.umu.se/~henrikb/papers/mfcs08full.pdf (accessed:
2016-03-05)

[4] Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981), http://doi.acm.org/10.1145/322234.322243

[5] Cosmadakis, S., Gaifman, H., Kanellakis, P., Vardi, M.: Decidable optimization
problems for database logic programs. In: Proc. STOC’88. pp. 477–490 (1988)

[6] Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive
power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

[7] Frochaux, A.: Static Analysis of Monadic Datalog on Finite Labeled Trees. Doc-
toral Dissertation, Humboldt-Universität zu Berlin, to appear

[8] Frochaux, A., Grohe, M., Schweikardt, N.: Monadic datalog containment on trees.
In: Proc. AMW’14 (2014), full version: http://arxiv.org/abs/1404.0606

[9] Frochaux, A., Schweikardt, N.: A note on monadic datalog on unranked trees.
Technical Report, available at http://arxiv.org/abs/1310.1316 (2013)

[10] Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages
for web information extraction. J. ACM 51(1), 74–113 (2004)

http://www8.cs.umu.se/~henrikb/papers/mfcs08full.pdf
http://doi.acm.org/10.1145/322234.322243
http://arxiv.org/abs/1404.0606
http://arxiv.org/abs/1310.1316

	Monadic Datalog Containment on Trees Using the Descendant-Axis
	Introduction
	Trees and Monadic Datalog (`39`42`"613A``45`47`"603AmDatalog)
	2Exptime-hardness on Ordered Trees
	2Exptime-hardness on Unordered Trees
	Final Remarks

