
Towards Temporal Graph Databases

Alexander Campos, Jorge Mozzino, and Alejandro Vaisman

Instituto Tecnologico de Buenos Aires
jcamposi,jmozzino,avaisman@itba.edu.ar

Abstract. In spite of the extensive literature on graph databases (GDBs),
temporal GDBs have not received too much attention so far. Tempo-
ral GBDs can capture, for example, the evolution of social networks
across time, a relevant topic in data analysis nowadays. We propose a
data model and query language (denoted TEG-QL) for temporal GDBs,
based on the notion of attribute graphs. This allows a straightforward
translation to Neo4J, a well-known GBD.

Keywords: Neo4J, Graph Database, Temporal Graphs

1 Introduction

Graphs, and, particularly, attributed graphs [8], are becoming increasingly pop-
ular to model different kinds of networks (e.g., social networks, sensor networks,
and the kind) for analysis in a classical way, and also for Online Analytical Pro-
cessing (OLAP) on graphs [6, 8]. Also, these kinds of graphs underlie the data
model of Neo4J [1], probably the most popular graph database for social network
analysis [2]. In spite of the extensive bibliography on graph database models [3],
and of the fact that social networks are frequently-changing structures, not much
attention has yet been paid to temporal graph databases. In this paper we intro-
duce a temporal data model consisting in a data structure (an attribute graph),
and a set of constraints. Over this model, we define a temporal query language,
called TEG-QL, an SQL/SPARQL-like style language, aimed at facilitating the
translation to Cypher, the query language for Neo4J.

Among the work on temporal graphs, Catutto et al. [5] organize temporal
data in so-called frames, associated with a time interval. When changes are
frequent, redundancy is a problem in this model, since each frame is connected
to all the existing data. Also, changes in attributes are not allowed. Khurana and
Deshpande [7] studied methods to efficiently query historical graphs, focusing on
querying the state of a network as of a certain point (snapshot) in time. They use
a model based on versioning, storing the current graph, plus a series of deltas,
which contain the graph variation over time. Our model, on the contrary, is
based on timestamps, where the complete history is stored in the same graph.

Our running example is a network containing two kinds of nodes, represent-
ing persons and buildings. Edges are of two kinds: One, representing friendship
relationships between people across time; the other one, telling the buildings



Fig. 1. A temporal graph and its different kinds of nodes

where people had lived in through time. Besides information about the name,
type of building, number of bedrooms in the apartment, etc., nodes have a tem-
poral attribute, which is a temporal element indicating the periods of validity of
the node. Edges are also labeled with temporal attributes.

2 Data Model

We now define our temporal data model, based on the notion of attribute graphs.

Definition 1 (Temporal graph). A temporal graph is a structure G(No,Ne,
Na,Nv,E) where G is the name of the graph, E is a set of edges, and No,
Ne, Na, and Nv are sets of nodes, denoted object nodes, edge nodes, attribute
nodes,and value nodes, respectively. Every node is associated with a tuple (name,
interval), where name represents the content of the node, and interval is a
temporal element representing the period(s) in which the node is (was) valid. ut

Object nodes represent entities, edge nodes represent relationships between
object nodes, attribute nodes describe entities, and value nodes represent the
value of an attribute. Figure 1 depicts a portion of a graph, using our running
example. The properties labeling the nodes are, from top to bottom, id, name
and interval. This way, the node with id=4 (in light green) is an Edge node,
the node with id=1 (in red) is an Object node, the node with id=2 (purple) is
an Attribute node, and the one with id=3 (grey) is a Value node. ut

Definition 2 (Constraints). Consider the following notation. We denote edge
nodes as ne{na, nb}, where ne is an edge node connected to object nodes na and
nb; e{na, nb} represent edges, where na and nb are nodes connected by edge e;
na{n} represent attribute nodes, where n is the object or edge node connected to
na; nv{na} denote value nodes, where na is the attribute node connected to nv.

For the graph in Definition 1, the following constraints hold:

1. ∀n, n′ ∈ No, n = n′ ∨ n.id 6= n′.id
2. ∀n, n′ ∈ Ne, n = n′ ∨ n.id 6= n′.id
3. ∀n, n′ ∈ Na, n = n′ ∨ n.id 6= n′.id



4. ∀n, n′ ∈ Nv, n = n′ ∨ n.id 6= n′.id
5. ∀nv{na}, nv′{na} ∈ Nv, nv = nv′ ∨ nv.value 6= nv′.value
6. ∀n ∈ No, e{n, n′} ∈ E ⇒ n′ ∈ Ne

⋃
Na

7. ∀n ∈ Ne, e{n, n′} ∈ E ⇒ n′ ∈ No
⋃
Na

8. ∀n ∈ Na, e{n, n′} ∈ E ⇒ n′ ∈ No
⋃

Ne
⋃
Nv

9. ∀n ∈ Nv, e{n, n′} ∈ E ⇒ n′ ∈ Nv
10. ∀ne ∈ Ne, if ∃ e{no, ne} ∧ ∃e′{ne, no′} ⇒6 ∃e′′ ∈ E, 6 ∃no′′ ∈ No ∧ no′′ 6=

no ∧ no′′ 6= no′ ∧ e′′{no′′, ne} ∧ e′′{ne, no′′}
11. ∀n ∈ Na(∃no ∈ No∃e ∈ E(e(no, n) ∨ ∃ne ∈ Ne ∧ e{ne, n} ∧ (6 ∃n′ ∈

(Na
⋃
Ne

⋃
Nv

⋃
No) ∧ e′ ∈ E ∧ e′{n′, n})

12. ∀n ∈ Nv∧e{n′, n}∧n ∈ Na⇒6 ∃!n′′ ∈ (Na
⋃
Ne

⋃
Nv

⋃
No)∧(e′′{n′′, n} ∈

E ∨ e′′{n, n′′} ∈ E
13. ∃e{n, n′}, e′{n, n′} ∈ E ⇒ e = e′

14. ∀ne{n, n′} ∈ Ne, ne.interval ⊂ n.interval ∩ n′.interval
15. ∀na{n} ∈ Na, na.interval ⊂ n.interval
16. ∀nv{na} ∈ Nv, nv.interval ⊂ nv.interval
17. ∀nv{na}, nv′{na}, nv 6= nv′, nv.interval ∩ nv′.interval = ∅

Constraints 1 through 4 state that no two nodes can have the same id. Constraint
5 requires coalescing all nodes with the same value; Constraints 6 through 9 state
that Object nodes can only be connected to edge nodes or attribute nodes; Edge
nodes can only be connected to object nodes or attribute nodes; Attribute nodes
can be connected to non-attribute nodes; and Value nodes can only be connected
to attribute nodes. The cardinalities of these connections is stated by Constraints
10 through 13 (e.g., Edge nodes must be connected to exactly two different object
nodes through exactly one edge). Constraints 14 to 16 restrict the values of the
interval property. Finally, constraint 17 forces value nodes connected to the
same attribute node to have non-overlapping intervals. ut

3 TEG-QL: A Query Language for Graphs

The syntax of TEG-QL resembles the one of SQL, but queries, as usual in graphs,
are based on pattern matching. Thus, the FROM clause contains one or more paths
(of fixed or variable length), over which a selection is performed. The SELECT

clause may either mention just attributes or paths. The temporal semantics in
embedded in the language, i.e., the answer to the query is a temporal graph,
although the query may not mention temporal attributes. This can be changed
by the SNAPSHOT modifier, which allows to retrieve the state of the graph at a
certain point in time, or the IN modifier, which allows retrieving the status of
the graph in a certain interval. Further details can be found in [4].

Consider the query People and buildings such that a person named John
Smith has lived in such buildings. The TEG-QL query is shown on the left hand
side of Figure 2. We can see that we take the paths matching the FROM clause,
and filter them using the condition in the WHERE clause. Figure 3 (left) shows
the result. The center node (in orange) is the Person node that represents John



SELECT Person−LivedIn→Building

FROM Person−LivedIn→Building

WHERE Person.Name = ’John Smith’

SELECT Person−friend→P2

FROM Person−Friend→Person as P2

WHERE Person.Name = ’John Smith’

Fig. 2. TEG-QL queries

Fig. 3. Query selecting a path (left); Friends of John Smith (right)

Smith, middle nodes (yellow) nodes are the edge nodes representing the Lived In
relationships; and outer nodes (blue) are the Building nodes.

The TEG-QL expression for the query Friends of someone called John Smith
is shown in Figure 2 (right); Figure 3 (right) depicts the clusters of people in the
result (the ones who know someone with the name “John Smith”).

Queries showing the use of the SNAPSHOT and IN modifiers are depicted in
Figure 4. The query on the left returns all the people named John Smith, and
the buildings where they lived during 1990. Note that we assume a temporal
granularity at the year level here (We do not get into the details of how to
manipulate granularities here). The IN predicate allows selecting nodes and edges
valid in a given interval. The query on the right hand side of Figure 4 is similar
to the one above, just selecting those paths existing between 1986 and 1989.

SELECT Person−LivedIn→Building

FROM Person−LivedIn→Building

WHERE Person.Name = ’John Smith’

SNAPSHOT 1990

SELECT *

FROM Person−LivedIn→Building

WHERE Person.Name = ’John Smith’

IN [1986-1989]

Fig. 4. TEG-QL queries with SNAPSHOT (left) and IN (right) modifiers

To translate TEG-QL queries into Cypher, we first translate each path in the
FROM clause. The term element.alias:OBJECT{title:element.name} results
from the translation of an object node; an Edge node is translated analogously.
We then expand the SELECT clause with the corresponding attributes. Finally,
the WHERE clause is addressed splitting conjunctions and disjunctions. Details of
the translation process can be found in [4]

Future work will focus on expanding the temporal capabilities of TEG-QL,
and, most of on addressing the problem of query optimization.



References

1. Neo4J website, http://www.neo4j.com
2. Angles, R.: A Comparison of Current Graph Database Models. In: Proceedings of

ICDE Workshops. pp. 171–177. Arlington, VA, USA (2012)
3. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing

Surveys (CSUR) 40(1), 1–39 (2008)
4. Campos, A., Mozzino, J., Vaisman, A.: Towards temporal graph databases. CoRR

abs/1604.08568 (2016), http://arxiv.org/abs/1604.08568
5. Cattuto, C., Quaggiotto, M., Panisson, A., Averbuch, A.: Time-varying social net-

works in a graph database. In: Proceedings of GRADES 2013. p. 11. NY, USA
(2013)

6. Ghrab, A., Romero, O., Skhiri, S., Vaisman, A., Zimányi, E.: GRAD: Modeling
and Querying Data Warehouses. In: Proceedings of ADBIS. pp. 92–105. Poitiers,
France (2015)

7. Khurana, U., Deshpande, A.: HiNGE: Enabling Temporal Analytics at Scale. In:
Proceedings of SIGMOD. NY, USA (2013)

8. Wang, Z., Fan, Q., Wang, H., Tan, K., Aggrawal, D., Abbadi, A.E.: PArallel GRaph
OLap Over Large Scale Attributed Graphs. In: Proceedings of ICDE. Chicago, USA
(2014)


