
Unique Solutions in Data Exchange under sts
Mappings

Nhung Ngo and Enrico Franconi

KRDB Research Centre
Free University of Bozen-Bolzano, Italy

lastname @inf.unibz.it

http://www.inf.unibz.it/krdb/

Abstract In classical data exchange, multiple solutions may appear and
inherently cause many problems. To tackle the problem, one may use a
richer language for schema mapping to have a unique solution. Therefore,
in the paper, we consider a data exchange setting in which schema map-
ping contains a set of source-to-target dependencies and a set of target-
to-source dependencies (sts mappings). Under the setting, we first study
the problem of deciding whether a data exchange setting has a unique
solution with respect to a source instance. We show that the problem is
as hard as Unique SAT problem and provide some restricted cases where
the problem is tractable. Besides, we consider a more general problem
that aims to check if a data exchange setting guarantees unique solu-
tions for arbitrary source instances. While the problem is undecidable in
general, we still can characterise some fragments where the problem is
decidable and complete for some complexity class.

1 Introduction

Data exchange as a theoretical problem was introduced a decade ago in [10]
and has been one of the most active research topics in foundation of databases
due to the need for the exchange of data in many business applications. This is
the problem of transforming data structured under a source schema into data
structured under a target schema. Given a source instance, the purpose of data
exchange is to materialise a valid target instance (called a solution) respecting
the schema mapping, specifications that describe the relationship between data
in the two heterogeneous schemas – the source and the target.

Classically, schema mappings in data exchange are written as source-to-target
tuple generating dependencies (s-t tgds) to specify that if some positive patterns
hold in the source, then some corresponding positive patterns must hold in the
target as well. Source-to-target tuple generating dependencies are existential
rules with positive conjunctive body and positive conjunctive head; the head may
contain existentially quantified variables. Under a s-t tgds mapping, there might
be more than one solution corresponding to a given source database because
the target instances might contain additional facts or unknown facts. That is,
the target database is actually an incomplete database, in the sense of classical

database theory, namely it is a set of possible databases. This leads to a mismatch
between the purpose of data exchange-materialising a valid target database and
its specifications-generating multiple valid instances.

After data is exchanged and a target instance is generated, one may want to
do query answering the target data. As a consequence of incomplete database,
the problem is complex and non-intuitive for general (non-positive) relational
or aggregate queries, since it is basically comparable to entailment with open-
world semantics (namely the computation of certain answers), and standard
relational database technologies can not be used. Anomalies caused by certain
answer semantics are mentioned in [2,10,1,12], and nicely summarised by [14]
thought a set of examples.

In order to solve the query answering problem, the classical data exchange
framework restricts the target query language to just monotone queries (i.e.,
positive queries or union of conjunctive queries). It turns out that the certain
answer to monotone queries over the incomplete target database are the same
as the answers of the same query over a representative specific database (one of
the so called universal solutions – the core being a minimal among them) [10].
With this restriction on the query language, query answering over the target
databases becomes meaningful and efficient.

To give meaning to more expressive queries (i.e queries with negation or
aggregation), various interesting extensions have been proposed to restrict the
uncertainty of the target instance. Extensions that are based on semantic re-
striction include Close World Assumption (CWA) semantics by Libkin [13] and
GCWA* semantics by Hernich [12]. Regarding to restrictions on syntax, a map-
ping language which is more expressive than s-t tgds, namely, bidirectional tgds
were considered by Arenas et. al. [3]. However, these syntax and semantic restric-
tions are not strong enough in general to eliminate completely the uncertainty
of target instances. As a matter of fact, they can not rule out all anomalies in
query answering and also do not satisfy the ultimate goal of data exchange -
materialising a valid target instance. Another way to deal with the problem is
to use the definability abduction approach [15] that aims at finding extensions
(including t−s tgds) to the initial schema mappings to guarantee the uniqueness
of the materialised target instance. The results mentioned in this paper can be
considered as the complexity analysis of the t−s tgds extension in the approach.

Contribution. In this paper, we are interested in data exchange settings where
there is no ambiguity in selecting a target instance to be materialised and con-
sequently, query answering can be done properly through the target instance.
In other words, given a data exchange setting we would like to check if schema
mapping rules are strong enough to guarantee the uniqueness of valid target
instance. Obviously, we always get a negative answer if the language of schema
mapping is s-t tgds. Therefore, in the paper, we consider both source-to-target
tgds and target-to-source tgds (t-s tgds) for the mapping rules. The mapping is
called sts mapping in this paper.

The mapping language was first considered in peer data exchange [11] in
which a source peer may contribute data for a target peer through s-t tgds and

a target peer may use t-s tgds to restrict the data it receives. The mapping
language is more expressive than the bidirectional one in [3] since it contains
arbitrary t-s tgds, not only the inverses of s-t tgds.

Given a data exchange setting in which schema mapping is in sts, we study
the following decision questions.

1. Does the data exchange setting have an unique solution w.r.t a specific source
instance?

2. Does the data exchange setting guarantee a unique solution for any source
instance?

As an example for the first problem, consider the source schema with two re-
lations {Employee(EMPid), Phone(EMPid, PhNum)}, and a target schema with
one relation Contact(CONid, PhNum). Given a source database {Employee(1),
Phone(1, 123)} and the following mappings:

Employee(x)→ ∃yContact(x, y)

Contact(x, y)→ Phone(x, y)

Obviously, there is only one target instance {Contact(1, 123) } that together
with the source instance forms a logical model of the mappings and therefore
the decision procedure should give a positive answer. If we change the source
database to {Employee(1), Phone(1, 123), Phone(2, 234)}, we do not have any
more a unique solution and receive a negative answer.

To illustrate for the second problem, consider the source database with two
relations with the schema {Employee(EMPid), Manager(MANid)}, and a target
database with one relation with the schema Staff(STid). In order to move the
data from each of the source relation to the target relation we could state the
following mappings:

Employee(x)→ Staff (x)

Manager(x)→ Staff (x)

Staff (x)→ Employee(x)

These mappings guarantee that for any source instance, there is at most one
solution for it under these mappings and therefore the decision procedure should
give a positive answer. Note that the mapping rules do not accept every source
instance, i.e source databases in which there is some manager which is not an
employee have no solution.

Note that our notion of unique solution is not related to the unique-solution
property mentioned in [9] about inverting schema mapping, since the latter re-
quires distinct source instances to have distinct sets of solutions.

Organisation. We start with some preliminary notions and definitions related
to unique solution. In Section 3, we present the complexity results of checking
the existence of unique solution w.r.t a source instance. Next section is devoted
to the problem of guarantee unique solution. As usual, at the end is conclusion
and outlook.

2 Formal Preliminaries

A schema is a finite set of predicate names with associated arities. Let R be
a schema, R = {R1, ..., Rk}, an instance I over R is an union of RI1, R

I
2, ..., R

I
k

such that each RIi is a finite set of tuples having the same arity as Ri. If I is an
instance of schema S1 and J is an instance of schema S2, we use (I, J) to denote
an instance of schema S1 ∪ S2.

We consider a classical first-order logic setting to define the semantics of the
framework. If I is an instance and φ is a logic formula, we write I |= φ if I
satisfies φ in the first-order logic sense. If Σ is a set of formulas, we write I |= Σ
to mean I |= φ for every φ ∈ Σ. Given an instance I, we use Adom(I) to describe
the set of all constants appearing in I.

Given a set of sentences Φ, we use σ(Φ) to denote the signature of Φ, i.e. the
set of all non-logical symbols in Φ.

Dependencies. A tuple generating dependency (tgd) is a sentence of the form
∀x̄, z̄(ϕ(x̄, z̄) → ∃ȳψ(x̄, ȳ)), where ϕ and ψ are conjunctions of atoms. For the
sake of readability, we write ϕ(x̄, z̄)→ ∃ȳψ(x̄, ȳ) instead of the full formula. We
focus on simple tgds, i.e., tgds in which every atom does not contain occurrences
of constants and repeated occurrences of variables.

A tgd is a source-to-target tgd (s-t tgd) if ϕ and ψ are formulas over S and
T respectively, and vice versa, a tgd is a target-to-source tgd (t-s tgd) if ϕ and
ψ are formulas over T and S respectively. A tgd is full if ȳ = ∅, otherwise, it is
embedded. A tgd is a local-as-view (LAV) dependency if ϕ is an atom. A LAV
dependency is complete if z̄ = ∅.
Data Exchange. A data exchange setting is a tuple M = (S,T, Σ), where
the set Σ is referred to schema mapping, S and T denote the source and target
schemas, respectively. In the following we consider only data exchange settings
M in which Σ = Σst∪Σts and Σst is a set of s-t tgds and Σts is a set of t-s tgds.
We also assume that all the predicates from T appear in the schema mapping,
i.e. the mappings tell us some information about each target predicate.

By a solution to the data exchange setting M for a source instance I, we
mean a target instance J such that (I, J) |= Σ. We use the notation Sol(M, I)
to denote the set of all solutions to the data exchange setting M for a source
instance I.

Chase. Given an instance I and a set of tgds Σ, if the chase of I with Σ is
finite, we denote by chaseΣ(I) the result of the finite chase. Please refer to [10]
for the detailed definition of chase.

Unique solution. We now define some notions related to unique solution that
will be used later to define our main problems.

Definition 1. Given a data exchange settingM and a source instance I, (M, I)
has a unique solution iff there is only one J such that J is a solution of M w.r.t
the source instance I.

Without a specific source instance, we are interested in the following property
of data exchange setting.

Definition 2. Given a data exchange setting M, we say that M guarantees
unique solutions iff for every source instance I, if there is a solution J of M
w.r.t I then (M, I) has a unique solution.

3 Existence of Unique Solution

In this section, we study the complexity of checking if (M, I) has a unique
solution. Formally, given a data exchange setting M, the problem is defined as
follows.

Problem: ExistenceOfUniqueSolution(M)
Input: source instance I
Output: Is there a unique target instance J such
that J ∈ Sol(M, I)?

We start our complexity analysis with a general setting in which mapping
rules are arbitrary tgds. As we mentioned in the introduction, by considering
also t-s tgds in the mapping, our data exchange setting is similar to a peer data
exchange setting [11]. Since the data complexity of existent-of-solution problem
in peer data exchange setting is NP-complete, we do not expect a lower complex-
ity for ExistenceOfUniqueSolution(M). Indeed, we show that the complexity
connection between the two problems is analogous as the connection between
SAT and Unique SAT [4].

Theorem 1. Unique-solution-checking problem is in NP ∩ co-NP for data com-
plexity.

Proof. Let us start the proof with a simple observation about the unique solution
of a given data exchange setting M and a source instance I. Intuitively, the
observation implies the fact that the number of tuples in the unique solution is
polynomially bounded by the input.

Lemma 1. If J ∈ Sol(M, I) and J is unique then Adom(J) ⊆ Adom(I).

Proof. Assume that there is an element a ∈ Adom(J) and a /∈ Adom(I). Let
J ′ be a target instance which is the same as J but a is replaced by a′ for
some new constants a′ /∈ Adom(I) ∪ Adom(J). J ′ is isomorphic to J , therefore
J ′ ∈ Sol(M, I). This leads to a contradiction to the fact that J is unique.

Because the schema is fixed, based on the lemma, it’s straightforward to see
that target instances which could be the unique solution of data exchange setting
M for a source instance I have at most |T| × |Adom(I)|m tuples where |T| is
the number of target predicates and m is the largest arity in T.

As a consequence, we have the following naive algorithm to decide the prob-
lem.

1. Verify in NP if there is a solution by guessing a target instance J using only
constants in Adom(I) and checking if J ∈ Sol(M, I)

2. Verify in co-NP if such the solution is unique as follows: For every pair of
target instances (J, J ′) in which J contains only constants in Adom(I) and
J ′ contains constants in Adom(I) ∪ {cn} (cn /∈ Adom(I))
(a) Check if J is a solution.
(b) Check if J 6= J ′.
(c) Check if J ′ is also a solution.

ut

We show the problem is complete for the class of NP ∩ co-NP using the
following theorem.

Theorem 2. Unique-solution-checking problem is NP ∩ co-NP hard.

Proof. We prove the theorem by providing a reduction from Unique SAT to our
problem.

Let φ be a propositional formula in CNF , φ = C1 ∧ ... ∧ Cm where each Ci
is a disjunction of literals among n variables {p1, ..., pn}.

We form M and I from φ as follows.

S = {L(., .), C(.), P (.), V (.), T (.), F (.), NotP (.), I(., .)};
T = {A(., .), L′(., .), T ′(.), F ′(.), I ′(., .)};
Σst= {L(i, p)→ L′(i, p),

T (x)→ T ′(x), F (x)→ F ′(x),
I(x, y)→ I ′(x, y), P (x)→ ∃yA(x, y),
C(x)→ ∃yz.L′(x, y) ∧A(y, z) ∧ T ′(z)}

Σts= {L′(i, p)→ L(i, p),
T ′(x)→ T (x), F ′(x)→ F (x),
I ′(x, y)→ I(x, y), A(x, y)→ V (y) ∧ P (x),
A(x, y) ∧A(x, z) ∧ T (y) ∧ F (z)→ NotP (x),
A(x, y) ∧A(x′, y) ∧ I ′(x, y′)→ NotP (x)}

I = {P (pi), P ((̄pi))|i = 1, n}∪
{V (true), V (false)}∪
{T (true), F (false)}∪
{I(pi, p̄i), I(p̄i, pi))}∪
{C(i)|i = 1, n}∪
{L(i, p)|p ∈ Ci, i = 1, n)}∪
{L(i, p̄)|¬p ∈ Ci, i = 1, n)}∪
{NotP (−1)}

Intuitively, Σts ∪ Σst guarantees A is a correct assignment which assigns: (i)
truth values to propositions in φ and their negations; (ii) one truth value to one
literals and (iii) opposite values to opposite literals. Besides, the last dependency
in Σst implies that A form a model of φ.

Now we show that φ is unique SAT if and only if (M, I) has a unique solution.
If φ is unique SAT, let M be the unique model of φ. We consider target in-

stance J such that T ′J = T I , L′J = LI , F ′J = F I and AJ = {(p, true), (p̄, false)|

p ∈M}∪{(p̄, true), (p, false)|p /∈M}. Obviously J ∈ Sol(M, I) because M |= φ
then for every clause Ci, there is some literal in Ci is assigned to true. If J is
not unique then there is J ′ ∈ Sol(M, I) such that AJ

′ 6= AJ . Let M ′ 6= M be
the interpretation in which pi ∈M ′ iff (pi, true) ∈ AJ

′
, then for every clause Ci,

there is some literal l ∈ Ci, l ∈ M ′ if l is positive and l /∈ M ′ if l is negative.
Consequently, M ′ |= φ. This leads to a contradiction.

The inverse direction can be proved analogously.
Since Σst and Σts do not depend in φ, we can conclude the problem is NP

∩ co-NP hard. ut

Now, let us identify some cases where the problem can be solved by a poly-
nomial time algorithm.

Theorem 3. Suppose we consider data exchange settingM in which dependen-
cies from target to source are full tgds. Then ExistenceOfUniqueSolution(M)
is tractable.

Proof. In the algorithm mentioned in the proof of Theorem 1, one does not
know which could be the unique solution therefore we need to guess and check
an arbitrary one. This step is not necessary in case Σst contains only full tgds
because we know what could be the candidate for the unique solution.

Lemma 2. Σst contains only full tgds. If Sol(M, I) 6= ∅ then J = chaseΣst
(I) ∈

Sol(M, I).

Proof. Since J = chaseΣst
(I), (I, J) |= Σst. Assume that J /∈ Sol(M, I), then

(I, J) 6|= Σts. Let J ′ be a target instance such that J ′ ∈ Sol(M, I). Because Σst
contains only full tgds, J is also a core of the data exchange setting (Σst, S, T).
Therefore, J ⊂ J ′. Besides, since (J ′, I) |= Σts, (J, I) |= Σ. This leads to a
contradiction.

Assume J = chaseΣst
(I) ∈ Sol(M, I) and there is another J1 ∈ Sol(M, I).

It holds that J ⊂ J1 because Σst contains only full tgds. Let P be a target
predicate and ā is a tuple such that P (ā) ∈ J1 \ J . Consider the target instance
J2 = J ∪ {P (ā)}. Since J ⊂ J2, (I, J2) |= Σst. Besides, since J2 ⊂ J1, (J2, I) |=
Σts. Therefore J2 ∈ Sol(M, I). As a matter of fact, to verify if J is the unique
of (M, I), one can use the following PTIME algorithm:

– Verify if J is a solution.
– If J is a solution, for each target predicate P and each tuple ā, check if
J2 = J ∪P (ā) is in Sol(M, I). If there is no such P (ā then conclude J is the
unique solution.

ut

A similar situation happens if we require Σts to contain only complete LAV
tgds.

Theorem 4. If Σts contains only complete LAV dependencies then the unique-
solution-checking problem is tractable .

Proof. By restricting target to source dependencies to be complete LAV tgds,
we also know what could be the candidate for the unique solution. Assume
that we have T contains k target predicates T1, ..., Tk. W.l.o.g we can assume
that Σts = {Ti(x̄) → φsi(x̄, ȳ)|i = 1, k} where φsi(x̄, ȳ) is some conjunctive
query over source schema S. Let Σ−1ts = {Ti(x̄) ← φsi(x̄, ȳ)|i = 1, k}, then the
following lemma holds.

Lemma 3. Σts contains only complete LAV tgds. If Sol(M, I) 6= ∅ then J =
chaseΣ−1

ts
(I) ∈ Sol(M, I).

Proof. Since J = chaseΣ−1
ts

(I) ∈ Sol(M, I), (I, J) |= Σts and T Ji = φIsi for

i = 1, k. Assume that J /∈ Sol(M, I), then (I, J) 6|= Σst. Let J ′ be a target
instance such that J ′ ∈ Sol(M, I), (I, J ′) |= Σst then for each Ti ∈ T, T J

′

i ⊆ φIsi .
Consequently, J ′ ⊆ J . Besides, since (I, J ′) |= Σst, together with the fact J ′ ⊆ J ,
we can imply (I, J) |= Σst. This leads to a contradiction.

Based on Lemma 3, we have an analogous polynomial algorithm as in the proof
of Theorem 3. ut

4 Guaranteeing Unique Solutions

In this section, we show results on complexity of deciding if a data exchange
setting guarantees a unique solution for any source instance. The problem is
formalised as follows.

Problem: UniqueSolutionGuarantee()
Input: a data exchange setting M
Output: Does M guarantee unique solutions?

Without any restriction in the syntax of mapping rules, we show that the
problem is undecidable as follows.

Theorem 5. The problem of deciding if a data exchange setting guarantees
unique solutions is undecidable.

Proof. We prove the theorem by reducing the problem of checking conjunctive
query containment under a set of tgds [6] to our problem.

Assume that we have a set of tgds Θ and two conjunctive queries q1(x̄) and
q2(x̄) written over σ(Θ), Θ contains n dependencies θi : φi(x̄) → ∃ȳ.ϕi(x̄, ȳ),
i = 1, n. Take the data exchange setting M = (S,T, Σ) in which:

– S = σ(Θ)
– T = {p(.)} ∪ {Ti|i = 1, n} such that each Ti is a new predicate which has

the same arity as the arity of ϕi(x̄, ȳ).
– Σst = {q1(x̄) ∧ q2(x̄)→ p(x̄)} ∪ {φi(x̄)→ ∃ȳ.Ti(x̄, ȳ)|i = 1, n} ∪ {ϕi(x̄, ȳ)→
Ti(x̄, ȳ)|i = 1, n}.

– Σts = {p(x̄)→ q1(x̄)} ∪ {Ti(x̄, ȳ)→ ϕi(x̄, ȳ)|i = 1, n}.

We prove that Θ |= q1 ⊆ q2 if and only if M guarantees unique solutions.
Assume that Θ |= q1 ⊆ q2, then Θ |= ∀x̄.q1(x̄) ↔ q1(x̄) ∧ q2(x̄). Assume M

does not guarantee unique solutions, i.e there is a source instance I, there are
at least two different target instance J1, J2 such that both (I, J1) and (I, J2)
satisfy Σ. Based on the construction of Σ, we have for each target predicate Ti,
T J1i = T J2i = ϕIi . Besides, since Σ implies Θ, Σ |= q1(x̄)↔ q1(x̄)∧ q2(x̄) as well.
Therefore, pJ1 = pJ2 = qI1 = qI1 ∩ qI2 . This leads to a contradiction to the fact
that J1, J2 are different target instances.

In case Θ 6|= q1 ⊆ q2, then Θ 6|= ∀x̄.q1(x̄)→ q2(x̄). Therefore, there is a source
instance I which is a model of Θ but qI1 6= qI1 ∩ qI2 . Consider the two following
different target instances J1 and J2 where T J1i = T J1i = ϕIi , p

J1 = qI1 , p
J2 =

qI1 ∩ qI2 . Based on the definition of Σ, J1, J2 are solutions of M. This means M
does not guarantee unique solutions.

Note that the above reduction also yields a lower bound for the complexity
of the problem where the syntax of tgds is restricted and then it is decidable to
check conjunctive query containment under a set of tgds. In order to introduce
decidable algorithms for these cases, let us characterise necessary and sufficient
conditions of a data exchange setting that guarantees unique solutions. This can
be done by using the notion of Beth’s definability [7].

Definition 3 (Beth’s definability). Let Σ be a set of sentences in FOL. A
predicate P is implicitly definable from the set of predicates P under Σ if for
every two interpretations I = 〈DI , ·I〉 and J = 〈DJ , ·J 〉 such that they are
models of Σ, it holds that PI = PJ implies P I = PJ .

Based on the correspondence between the above definition and the defini-
tion of a data exchange that guarantees unique solutions, we have the following
lemma.

Lemma 4. A data exchange setting M guarantees unique solutions if and only
if for any predicate T ∈ T, T is implicitly definable from S under Σ.

Since Beth’s definability can be verified by a logical entailment, we also can
reduce the problem of checking the guarantee to the problem of checking atomic
query containment under a set of tgds as follows.

Theorem 6. A data exchange setting M guarantees unique solutions if and
only if for any predicate T ∈ T, Σ ∪ Σ̃ |= ∀x̄.T (x̄)↔ T̃ (x̄) where Σ̃ is obtained
from Σ by replacing every target predicate Pt with a new predicate with the same
arity P̃t and T̃ is a new predicate having the same arity as T .

Together with the results in deciding query containment under tgds men-
tioned in [6], the theorem and the reduction in the proof of Theorem 5 allow
us to obtain tight bounds of UniqueSolutionGuarantee() for the following frag-
ments of tgds.

Corollary 1. Given data exchange settingM = (S,T, Σ). Deciding ifM guar-
antees unique solutions has the following complexity:

1. 2EXPTIME-complete if Σ is weakly guarded.
2. 2EXPTIME-complete if Σ contains only guarded tgds.

Note that, by applying Beth’s and Craig’s theorems about definability in the
case a data exchange setting guarantees unique solutions, one can actually con-
structively rewrite target predicates as views of source predicates. Consequently,
given a source instance, a unique target instance can be materialised easily by
using SQL to compute the views.

5 Conclusion and Outlook

We have considered the problem of checking if a data exchange setting under
sts mappings has a unique solution and therefore it satisfies the purpose of
exchanging data. We have studied two decision questions of the problem, one
w.r.t a specific source instance and one w.r.t any source instance. While the
former is decidable and can be solved using a Unique SAT solver, the latter is
undecidable in general and is 2EXPTIME-complete in some fragments of tgds.

Besides the results and our on-going works in combined complexity analysis
of the former, there are some issues that are deserved for further investigation.
First, in [11] there is a syntactical class of tgds in which the existence-of-solution
of peer data exchange is tractable. Besides, the class covers the case of full
tgds and complete LAVs. Therefore, it is worth to study if the existence-of-
unique-solution problem is also tractable for this class. Second, more tgd-based
mapping languages should be considered for a complete complexity analysis such
as disjunctive tgds [8] and its guarded fragments [5]. Last but not least, in
the question about guarantee unique solution we have considered only the case
that solution-existence implies unique -solution-existence. It is still unknown if
the problem of checking a data exchange setting under sts mappings always
admitting unique solutions is decidable or undecidable.

References

1. Foto N. Afrati and Phokion G. Kolaitis. Answering aggregate queries in data
exchange. In PODS, PODS ’08, pages 129–138. ACM, 2008.

2. Marcelo Arenas, Pablo Barceló, Ronald Fagin, and Leonid Libkin. Locally consist-
ent transformations and query answering in data exchange. In PODS, PODS ’04,
pages 229–240, 2004.

3. Marcelo Arenas, Gabriel Diéguez, and Jorge Pérez. Bidirectional constraints for ex-
changing data: Beyond monotone queries. In Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 2698–2705, 2015.

4. Andreas Blass and Yuri Gurevich. On the unique satisfiability problem. Informa-
tion and Control, 55(1-3):80–88, 1982.

5. Pierre Bourhis, Michael Morak, and Andreas Pieris. The impact of disjunction on
query answering under guarded-based existential rules. In IJCAI 2013, Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence, Beijing,
China, August 3-9, 2013, 2013.

6. Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query
answering under expressive relational constraints. J. Artif. Intell. Res. (JAIR),
48:115–174, 2013.

7. William Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. J. Symb. Log., 22(3):269–285, 1957.

8. Alin Deutsch, Alan Nash, and Jeff Remmel. The chase revisited. In PODS, PODS
’08, pages 149–158, New York, NY, USA, 2008. ACM.

9. Ronald Fagin. Inverting schema mappings. In PODS, PODS ’06, pages 50–59,
New York, NY, USA, 2006. ACM.

10. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-
change: semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

11. Ariel Fuxman, Phokion G. Kolaitis, Renee J. Miller, and Wang Chiew Tan. Peer
data exchange. ACM Trans. Database Syst., 31(4):1454–1498, 2006.

12. André Hernich. Answering non-monotonic queries in relational data exchange. In
ICDT, pages 143–154, 2010.

13. Leonid Libkin. Data exchange and incomplete information. In PODS, PODS ’06,
pages 60–69, New York, NY, USA, 2006. ACM.

14. Leonid Libkin and Cristina Sirangelo. Open and closed world assumptions in data
exchange. In Proceedings of the 2009 Description Logics workshop, 2009.

15. Nhung Ngo and Enrico Franconi. Unique solutions in data exchange. In Database
and Expert Systems Applications - 25th International Conference, DEXA 2014,
Munich, Germany, September 1-4, 2014. Proceedings, Part II, pages 281–294, 2014.

